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Abstract—The phenomenon of increasing accidents caused by
reduced vigilance does exist. In the future, the high accuracy of
vigilance estimation will play a significant role in public trans-
portation safety. We propose a multimodal regression network
that consists of multichannel deep autoencoders with subnetwork
neurons (MCDAEsn). After we define two thresholds of “0.35”
and “0.70” from the percentage of eye closure, the output val-
ues are in the continuous range of 0–0.35, 0.36–0.70, and 0.71–1
representing the awake state, the tired state, and the drowsy
state, respectively. To verify the efficiency of our strategy, we
first applied the proposed approach to a single modality. Then,
for the multimodality, since the complementary information
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between forehead electrooculography and electroencephalogra-
phy features, we found the performance of the proposed approach
using features fusion significantly improved, demonstrating the
effectiveness and efficiency of our method.

Index Terms—Deep learning, dimension reduction, electroen-
cephalography (EEG), electrooculography (EOG), multimodal
vigilance estimation.

I. INTRODUCTION

D IFFERENT groups of scientists use the term “vigilance”
in different ways [1]. In psychiatry, vigilance can be

specifically described as attention to a potentially danger-
ous condition, with hypervigilance that is a symptom of
anxiety disorder [2]. In the area of cognitive neuroscience,
vigilance refers to the ability to focus on a task within a last-
ing time [3]. In clinical neurophysiology, the vigilance level
is related to refer to the corresponding arousal level on the
spectrum of the sleep–wake [4]. In the above discussion, the
most common definition is that vigilance represents sustained
attention.

The Centers for Disease Control and Prevention (CDC) [5]
reported that 4.2% of the 147 076 adult respondents from
nearly 20 states or regions reported having had at least one
drowsy drive in the past 30 days in 2009–2010. Reduced or
complete loss of vigilance has been resulting in an increas-
ing number of traffic accidents around the world [6], [7],
meaning it should be taken seriously. Various methods of
studying vigilance, including subjective methods [8], behav-
ioral methods [9]–[11], and vehicle-based methods [12], have
been proposed to cope with this problem. However, the pri-
mary limitations of those methods arise from ignoring the
uniqueness of the individual driver and neglecting the per-
sonal biases involved, as well as the monotony of the simulated
environment under experimental conditions.

Physiological signals or nonvisual features of drivers with
healthy physical conditions have fewer false than visual fea-
tures and can be used to predict drowsiness in a timely manner.
In fact, the methods based on physiological signals that repre-
sent internal cognitive states have been gradually considered as
an efficient means of assessing vigilance. Scientists have found
a certain relationship between electrocardiography (ECG) and
fatigue, including heart rate (HR) decrease and HR variabil-
ity (HRV), changes during fatigue [13], [14], and a healthy
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Fig. 1. Simulation experiment environment. (a) LCD screen. (b) SMI-ETGW and the electrode channels.

subject with prolonged fatigue has the reduced respiration rate
(RR) value [15]. The study of electromyography (EMG) shows
that the frequency spectrum shifts to low frequencies and the
amplitude of the EMG signal increases when muscles become
fatigued [16], [17]. Electroencephalography (EEG) [18], [19]
is generated from the potentials that are recorded from the
rhythmic activity of the postsynaptic cortical neuron, which is
synchronized by the complex interaction of a large number of
cortical cells. Among various physiological indicators, EEG
is considered to be the most important and reliable because
it directly records the neurophysiological signal of the human
brain.

In addition to EEG, electrooculography (EOG) evaluates
various eye movements, which can provide valuable warn-
ing indications of drowsiness. EOG is another promising
measure of assessing vigilance [20]. Unlike the traditional
EOG (EOGt)-based method, a simple but more robust method
proposed by Zheng and Lu [21] utilizes the placement of
wearable electrodes on the forehead area. The amplitude of
forehead EOG (EOGf ) is significantly lower after extraction
by a median filter, and suitable electrodes placement reduces
the user’s discomfort.

Huo et al. [22] and Wu et al. [23] have proposed
the multimodal methods for estimating the level of vig-
ilance and achieving better performance. For example,
Huo et al. [22] used a fusion strategy that employs feature-
level fusion (FLF) to detect fatigue levels, combined with
a graph-regularized extreme learning machine (GELM). The
average value of the correlation coefficient (COR)/root
mean-square error (RMSE) greatly improved, moving to
0.81/0.07 using fusion signals, while the corresponding
average COR/RMSE values were 0.73/0.09 for single
modality.

We propose using a network of multichannel deep autoen-
coders with subnetwork neurons (MCDAEsn) to obtain the
optimal features, employing feature fusion to estimate vigi-
lance. Here, we use four different EOG and EEG datasets
from SEED-VIG. Our work contributes to the research on the
topic as follows.

1) Compared to the other existing iterative deep-learning
(DL)-based networks [24], instead of being randomly
acquired, the hidden layers of the proposed autoencoder
model are calculated by replacement technologies and
include only four steps. Simultaneously, the proposed
architecture aims for dimension reduction and signal
reconstruction instead of relying on efficient classifi-
cation applications, as do the other existing multilayer
network models.

2) Unlike the other traditional multilayer networks [25], the
proposed model consists of many hidden nodes, each
of which can be considered as a layer of the network
model and has capabilities of feature selection and
representation learning. Simultaneously, the input data
are randomly divided into five batches, each of which
through processes of dimension reduction, subspace
feature extraction, and subspace feature combination.

3) To quantify vigilance, the output values are a series
of continuous value in the range of 0 to 1 corre-
sponding to the percentage of eye closure (PERCLOS).
Blink components, such as impulses from vertical EOG
(EOGv) feature and saccade components from horizon-
tal EOG (EOGh) feature that can be easily detected by
the proposed algorithm, which is consistent with our
previous conclusions [21].

II. RELATED WORKS

A. Description of the Dataset

Fig. 1(a) shows the data-collection apparatus, wherein the
experimental vehicle is an engineless car in which the gas
pedal and steering wheel are controlled by software. An LCD
screen in front of the vehicle simulates a highway driving
environment and is updated in real time. Subjects signed writ-
ten informed consent before participating, and this research
was approved by the local ethics committee. The data were
gathered from 23 human subjects, including 11 men and 12
women with an average age of 23. All of the subjects were
healthy, with normal hearing, visual acuity that was normal
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or corrected to normal, no visible trauma to the head, no use
of medication, and no addiction to alcohol or tobacco, and
they were all given regular rest according to the timetable.
To ensure that the subject was in a drowsy state while driv-
ing, the average time for the experiment was approximately
2 h, from 12:30 P.M. to 2:30 P.M., with the human subjects
reaching their peak drowsiness at 1:30 P.M. [26]. Before a
subject fell asleep during the experiment, no real-time warn-
ing feedback occurred. Fig. 1(b) displays the SensoMotoric
Instruments eye-tracking glasses wireless (SMI-ETGW) used
to calculate training label and all electrode channels used to
collect EOG and EEG signals.

B. Previous Related Network Models

As an important algorithm in artificial intelligence (AI), neu-
ral network-based algorithms have been widely used for EEG
signal processing. Our two extended neural network models
are proposed for the vigilance estimation, such as deep autoen-
coder (DAE) [20] and multilayer autoencoder (MAE) [27].
We used EOG-based single-modal DAE to estimate vigilance
and achieve an accuracy of 80%. Meanwhile, Yang et al.
proposed MAE for image reconstruction and dimension reduc-
tion with the Moore–Penrose inverse matrix learning strategy.
The features could be compressed by a single-hidden layer
with extremely fast processing speed.

Autoencoders can only address single-type samples and
can cause beneficial representations of the inputs; however,
we argue that a better representation should also depend on
the internal relationship between the input pairs. Thus, we
proposed MCDAEsn that can handle multiple types of samples.
The formula of output is

Hj = S
(

aj
i,bj, x

)
, i = {1, 2, . . . , d}, j = {1, 2, . . . , n} (1)

where j and i represent the jth subnetwork nodes and its ith
hidden nodes, respectively.

Each subnetwork node is only connected to its adjacent,
which can be considered as an independent system, improv-
ing learning efficiency effectively. In addition, the subnetwork
neurons as subspace feature extractors significantly increase
the generalization performance [28], as long as the generated
subspace features could be mixed and combined in the late
stages for classification.

III. METHODOLOGY

A. Data Preprocessing

1) PERCLOS: In continuous vigilance assessment with a
supervised machine learning paradigm, the chief challenge is
how to quantitatively mark physiological signals that are col-
lected from the sensors because it is theoretically difficult to
accurately obtain the ground truth of the transformed phys-
iological state. The association between eye movements and
arousal is not causal. Instead, eye movement acts as a promis-
ing indicator of arousal states, which has been widely explored
in previous studies. For example, in the neuroscience field,
Wang et al. [29] proposed that spontaneous eyelid closures
can serve as a proxy for vigilance and be jointly analyzed

Fig. 2. Details of ECD.

with functional magnetic resonance imaging (fMRI) [30], [31]
to determine vigilance fluctuation. Spontaneous eyelid clo-
sure also served as a good marker of reduced responsiveness
in sleep-deprived persons. In public driving safety fields, the
PERCLOS is one of the most widely acknowledged vigilance
indicators in [10] and [32]–[34]. The PERCLOS algorithm,
introduced by Wierwille [32], has a mean that is the propor-
tion of time for which eyes remain closed in a given unit
of time. Grace and Davis [34] at Carnegie Mellon University
repeatedly verified this finding, using a high-resolution cam-
era for testing an eye closure over a specific value to judge
drowsiness. Fig. 2 illustrates the measuring principle of the
PERCLOS based on the eyes closed degree (ECD), and
PERCLOS can be calculated as follows:

VP = T2 − T1

T3 − T0
, VP ∈ [0, 1] (2)

where VP represents the value of PERCLOS; and (T2−T1) and
(T3 − T0) indicate the eyes closure duration and the duration
time from 20% closed state to 20% open state, respectively.

We found that the method mentioned above only pays atten-
tion to two states—eyes closed and eyes open—instead of all
the important eye movements that provide crucial information
for estimating vigilance. Simultaneously, the performance of
the method based on traditional facial videos [35] can easily
be influenced by environmental factors, especially brightness
and occlusion. Thus, we use an automatic continuous vigilance
annotation method [36] that employs SMI-ETGW, offering up
to 120-Hz high resolution. SMI-ETGW can more fully reflect
eye movements, including blinks, saccades, and fixation com-
ponents, and the PERCLOS training labels calculated by it
can be regarded as an accurate and feasible ocular parame-
ter for real-time testing fatigue. This approach can be used
for dual tasks in both laboratory and real-world environments.
The formula is as follows:

VP = (T2 − T1)+ Ts

Tduration
, VP ∈ (0, 1)

Tduration = (T2 − T1)+ Tb + Ts + Tf (3)

where Tb, Ts, and Tf represent the time of blink, saccade, and
fixation state, respectively.

2) Forehead EOG: The eye movements we have analyzed
in this study were spontaneous, rather than intentional. The
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(a) (b)

Fig. 3. EOG and EEG data collected from different electrode placements. (a) Forehead electrode positions. (b) Temporal EEG and posterior EEG were
recorded from 6-channel electrode positions and 12-channel electrode positions, respectively.

TABLE I
ENCODE THE EOG FEATURE

signals were recorded passively over a long time period, with
the aim of finding the intrinsic associations between spon-
taneous eye movements and vigilance states. Since human–
machine interfaces have been comprehensively researched,
enough methods are available to extract the EOG signals. The
traditional EOG signals without noise are obtained through
traditional electrode placement around the eyes. In practical
applications, many restrictions exist [37], especially in regard
to the potential for obstructing one’s normal sight or normal
operation, intentional control of eye movements by the individ-
ual, and artifacts—potential shifts of the body surface caused
by eyelid movement and retinal dipole movement. Although
both vertical EOG (EOGv) and horizontal EOG (EOGh) exist
in the traditional EOG signals, it is difficult to extract them
directly. Compared with the methods of extracting EOGv and
EOGh features, we used forehead electrodes placement to
obtain the forehead EOG signals in the previous work [38], and
we successfully separated the forehead vertical-EOG (EOGfv)
and horizontal-EOG (EOGfh) signals in the raw EOGf signals.
Fig. 3(a) shows two types of electrode placements, which are
represented by numbers 1–4 (green dots) and numbers 4–7
(purple dots), respectively, and the two techniques share the
same electrode number 4. The electrodes of numbers 1, 3,
and 4 have the same height. The EOGfh and EOGfv can be col-
lected by the pairs of numbers 1 and 3 electrodes and numbers
2 and 4 electrodes, respectively.

EOGfv and EOGfh features can be obtained by the
approaches of fast independent component analysis

TABLE II
DIFFERENT EOG FEATURES

TABLE III
EOG FEATURES FORMAT

(FASTICA) [39] and the minus rule [21]. After extract-
ing EOGfh and EOGfv, Mexican hat continuous wavelet
transforms (MHWT) [40] are used, which is a peak detection
strategy, using a scale of 8 to detect the peaks of the eye
movements. If we define the Gaussian function as θ(x), we
can derive the function of MHWT as follows:

θ(x) = 1√
2πσ

e−x2/2σ

ψ(x) = d2θ(x)

dx2
= 2√

3
π−1/4

(
1 − x2

)
e−(

x2/2
)
.

(4)

Subsequent to the collection of these data, we encoded the
eye movements, such as peaks, blink candidates, and saccade
candidates in Table I. For example, a single blink contains
three successive peaks: 1) a negative peak; 2) a positive peak;
and 3) a negative peak. Thus, we encoded a blink as 010. We
have presented the details of these data on the eye movements
of the subjects in Tables II and III.

3) EEG: Eye movement alone is not enough to develop
a robust vigilance estimation model. Eye movement can be
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TABLE IV
DIFFERENT EEG FEATURES

intentionally controlled by subjects, which causes degraded
performance in prediction. We therefore combined different
modalities in our study by including brain signals. EEG is
an electrical activity that is noninvasively recorded from the
scalp, which cannot be intentionally controlled by subjects.
Moreover, the changes in brain activities contribute to early
warnings of reduced vigilance. Herein lies the motivation
for our development of a multimodal machine learning algo-
rithm combining both EOG and EEG to estimate vigilance.
According to the traditional methods [41], [42], ocular artifacts
(OAs), including eye movements and blinks, are always con-
sidered the most dominant type of contamination—especially
for the signals that are collected from the frontal head, which
produces higher—magnitude signals, allowing them to travel
throughout the scalp, distorting and masking EEG signals.
Compared with conventional approaches to removing EOGf

from forehead recording, we considered that EOGf offers cru-
cial information for the estimation of vigilance. We then used
the FASTICA method to separately extract EOGf and EEGf

signals from forehead electrodes recording.
The input matrix u = [No. 4; No. 2;−No. 1; No. 3] is con-

verted by the raw signals recorded by the front head channels
(No. 1, No. 2, No. 3, and No. 4). Here, the four columns of
the matrix u represent the data collected from channels No. 4,
No. 2, No. 1, and No. 3, respectively. We obtained the unmixed
matrix v after the decomposition. Then, the sum of inde-
pendent components w was decomposed by the multichannel
data. Thus, the pure EEGf signals ũ can be extracted as
follows:

w = v ∗ u

ũ = v−1 ∗ w̃ (5)

where w̃ is the matrix for activation waveforms w, of which
the rows consist of EOG components set to zero; and v−1

represents the inverse matrix of v.
The temporal and posterior electrode channel is a well-

established area, which is used for detecting changes in the
drowsiness state [43]. Temporal-EEG (EEGt) and posterior-
EEG (EEGp) were recorded by 6-channel electrode placements
and 12-channel electrode placements, respectively. Fig. 3(b)
displays the two electrode placements. For the process of
denoising EEG data, we used a bandpass filter with 1–75 Hz
to remove noise and artifacts manually and downsampled with
a sampling frequency of 200 Hz to improve computational
efficiency. We then used short-term Fourier transforms with
an 8-s nonoverlapping Hanning window to calculate the dif-
ferential entropy (DE) feature, which is considered one of the
most efficient EEG features for estimating vigilance. We define
[x, x ∼ G(μ, σ 2)] representing a random time series that fol-
lows the Gaussian distribution, and f (x | μ, σ 2) representing

TABLE V
EEG FEATURES FORMAT

Fig. 4. Double-layer network in the proposed framework. The m-dimensional
features Fe are obtained by mapping n-dimensional input data X.

its probability density function. The formula can be expressed
as follows:

f
(

x | μ, σ 2
)

= 1

σ
√

2π
e
−1

2
((x−μ)/σ)2

. (6)

Then, we obtained the DE features h(x | μ, σ 2) as follows:

h
(

x | μ, σ 2
)

= −
∫

x
f
(

x | μ, σ 2
)

logf
(

x | μ, σ 2
)

dx

= −
∫ +∞

−∞
1

σ
√

2π
e
−1

2
((x−μ)/σ)2

× log
1

σ
√

2π
e
−1

2
((x−μ)/σ)2

dx

= 1

2
log

(
2πeσ 2

)
. (7)

In addition, we extracted DE, and power spectral density
(PSD) features are extracted by the total frequency bands with
2-Hz frequency resolution (2 Hz) between 1 and 50 Hz and
five frequency bands (5Bands), respectively. After using the
moving average (MA) and the linear dynamic system (LDS)
filtering, we listed the EEG features used, and their formats
are in Tables IV and V, respectively. For example, in Table IV,
PSD-MA represented PSD features extracted by raw data prior
to the use of the MA separation strategy.

B. Network Model

According to the advantage of physiological signals, we
know that the EOGf has two properties: 1) a high ratio of
signal to noise and 2) ease of setting up. Meanwhile, EEG
can fully record neurophysiological signals about vigilance.
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Fig. 5. Multilayer structure for dimension reduction and signal reconstruction.

EOG and EEG signals have complementary characteristics.
We proposed a network MCDAEsn to test the accuracy of
vigilance. The related notations are defined in Table VI.

1) Subspace Feature Dimension Reduction and Signal
Reconstruction: A double-layer network in the proposed
framework is described in Fig. 4. The low-dimensional fea-
tures Fe are obtained by mapping high-dimensional input
data X. The weights of the decoding layer are used as the
input data of the next encoding layer and all parameters used
by the encoding layer are updated (see Fig. 5). The raw input
data were divided into five batches, each through the processes
of dimension reduction and signal reconstruction. The details
can be described as follows.

Step 1: Given N arbitrary distinct training samples from a
continuous system {(Xn,Yn)

N

1 ,X ∈ R
n1,Y ∈ (0, 1]}. Output

data were similar to the input data, which were reconstructed
by an autoencoder. Here X = Y, we then used the acti-
vation function φ1(x) = sin(x) in the encoding layer. The
initial general input weights (Wej,Wej ∈ R

n1×m) and biases
(bej, bej ∈ R) were orthogonal random generation, as follows:

Fe1 =
d∑

i=1

Fi
e1 = φ1

(
Wi

e1,X, bi
e1

)

=
d∑

i=1

sin
(
Wi

e1 · X + bi
e1

)

W′
ej · Wej = I, b′

ej · bej = 1 (8)

where Fe1 is current feature data.
Step 2: The inverse of the activation function is φ−1

1 (x) =
arcsin(x). The optimal parameters for the jth decoding layer
{(Wdj, bdj),Wdj ∈ R

n1×m, bdj ∈ R} are obtained by

Wd1 = φ−1
1 (Y) · F†

e1 = arcsin(Y) · F†
e1

bd1 = RMSE(Wd1 · Fe1 − arcsin(Y)) (9)

where RMSE represents the root-mean-squared error that is
the standard deviation (SD) of the residuals.

According to the ridge regression (RR) technique, the diag-
onal elements of the matrix F′F or FF′ should contain the
shrinkage ridge parameter (K > 0) in a multiple regression

TABLE VI
SYMBOLS USED FOR THE PROPOSED METHOD

analysis. The inverse function of Moore–Penrose F† can be
expressed as follows:

⎧⎪⎪⎨
⎪⎪⎩

F† = (
F′F

)−1F′F−1 = F′(K/I + FF′)−1
(
if

(
F′F

)
is nonsingular

)
F† = F′(F′F

)−1 = (
K/I + FF′)−1F′(

if
(
F′F

)
is singular

)
.

(10)

Step 3: Set j = j + 1, update Wej, bej, and Fej by

Wej = W′
dj

bej = bdj

Fej = φ1
(
Wej · X + bej

)
. (11)

Step 4: We repeat steps 2 and 3 (n−1) times, obtaining the
parameters of (We, be), (Wd, bd), and the feature Fe.

2) Subspace Feature Extraction: The initial feature of the
jth (the initial index j = 1) subnetwork neurons in a subspace
feature extraction layer is obtained from step 4. We found that
the initial feature is F2j = Fe.

Step 5: Given the φ2(x) = 1/(1 + exp−x) and φ3(x) =
1/(1 + exp−x) activation functions of the entrance layer and
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exit layer, respectively, we obtained the features of the jth
subnetwork neurons {(W3j, b3j),W3 ∈ R

n3×m, b3 ∈ R} by

W3j = φ−1
3 (L(Y)) · F†

2j

= −(log(1/L(Y)− 1))
/(

1 + exp−(W2j,X,b2j)
)†

b3j = RMSE
(
W2j ·

(
1 + exp−(W2j,X,b2j)

)
+ log(1/L(Y)− 1)

)
.

(12)

Step 6: We updated ej, W2j, and b2j as follows:

ej = Y − L−1 · φ3

(
1 + exp−(W2j,X,b2j)

)

W2j = φ−1
3

(
L
(
Pj−1 + F2j

)) · X−1

b2j = RMSE
(
W3j · X − Pj−1

)
(13)

where ej feedback the data {Pj = φ−1
3 (L(ej)) · (W2j)

−1,
P0 = 0}. L and L−1 represent the normalized function and
its reverse function, respectively.

Step 7: For set j = j + 1, we can determine the jth sub-
space features (W2j, b2j) and the (j + 1)th subspace features
(W2(j+1), b2(j+1)) to be

F2j = φ2
(
X,W2j, b2j

)

F2(j+1) = φ2
(
X,W2(j+1), b2(j+1)

)
. (14)

Step 8: We repeated steps 5–7 (n − 1) times to obtain the
subspace features {F21, . . . ,F2n}.

3) Subspace Feature Fusion: Dong et al. [44] demonstrated
that if the feature contains correct information, early fusion
can be considered as a robust strategy over late fusion by
an uncomplicated union of different features into one super
vector. We considered two pooling to reduce estimation vari-
ance error and bias: average pooling [45] and max pooling,
especially max pooling, which is employed in many currently
popular models of convolutional neural networks (CNNs),
including GoogLeNet [46], VGGNet [47], and AlexNet [48].
Max pooling is also widely used to reduce dimension and
feature combination in all types of physiological signals [23],
[49], [50]. For the multimodality approach, two different types
of input data of EOG {FEOG

21 , . . . ,FEOG
2l ,FEOG

2 ∈ R
n2×m} and

EEG {FEEG
21 , . . . ,FEEG

2l , FEEG
2 ∈ R

n2×m} were obtained from
the subspace feature extraction layer. The feature vectors of
EEG and eye movements are directly concatenated into a
larger feature vector as the inputs. Then, we found feature
fusion to be

F̂ = g
(

FEOG,FEEG
){

meann2×m
(
FEOG,FEEG)

maxn2×m
(
FEOG,FEEG) (15)

where g is a combination operator.
According to our previous studies [51], [52], given distinct

N samples {(Xt,Yt)
t=N
t=1 ,X ∈ R

n,Y ∈ R
m}, if the following

conditions are met:

W2 = φ−1
2 (L(em−1)) · X′(K/I + XX′)−1

= − log(1/L(em−1)− 1) · X′(K/I + XX′)−1

b2 =
∑(

W2 · X − φ−1
2 (L(en−1))

)/
N

=
∑

(W2X + log(1/L(en−1)− 1))
/

N

W3 =
(

en−1,L−1(F2)
)/∥∥∥L−1(F2)

∥∥∥ (16)

the equation limj→∞ ||Y−(L−1(φ2(W21·X+b21))·W31 + · · ·+
L−1(φ2(W2j · X + b2j)) · W3j)|| ≡ 0 holds. Both the input and
output weights of the proposed method are shown to have the
smallest norm among all the least-squares methods.

4) Feature Combination: Since the data have been divided
into five batches, we obtained the feature of the 1st batch {F1

3}
by performing steps 1–8 one time.

Step 9: We repeated steps 1–8 (5 − 1) times to obtain the
entire subspace feature {F1

3 + F2
3 + F3

3 + F4
3 + F5

3}.

C. Regression for Vigilance Estimation

Yang and Wu [28] indicated that mixed neurons play a vital
role in the coding and functioning of our brains. By recast-
ing subspace features into the mapping space, relevant brain
signals can be extracted by these features while generating
complex and stable behaviors. This process, from dimension
reduction and signal reconstruction to feature fusion, as illus-
trated in Fig. 6, shows the learning structures and dimensions
related to the above-mentioned biological evidence. We used
such a model to process signals recognition. The entire data
of one experiment were separated into five sessions for evalu-
ation, and after fusing all sessions’ features, we used five-fold
cross-validation to evaluate the performance. The value of the
continuous output data y in the range of 0–0.35, 0.36–0.70,
and 0.71–1 indicates the awake state, the fatigue state, and
the drowsy state, respectively.

The mean root-mean-square error (RMSEm) and the mean
correlation coefficient (CORm) are used to quantitatively assess
the extent of vigilance like quantitative testing of alcohol in
the blood. RMSEm and CORm usually reflect the squared error
and linear relationship between the observed and predicted
values, respectively. The range of the COR value is [−1, 1],
where −1, 0, and 1 represent the most disagreement, lack of
linear relationship, and the most agreement, respectively. The
formulas are

RMSE(x, y) =
√√√√

n∑
t=1

(xt − yt)
2/n

COR(x, y) =
∑n

t=1(xt − x̄)(yt − ȳ)√∑n
t=1(xt − x̄)2

∑n
t=1(yt − ȳ)2

(17)

where x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T repre-
sent the observed values and the predicted values, respectively,
while x̄ and ȳ represent the average value of x and y, respec-
tively. In short, the lower the RMSE value, and the higher the
COR value, the higher the accuracy of the predicted regression.

Analysis of variance (ANOVA) [53] is not only used to
study the statistical models and their associated estimation
procedures between groups but also within a group. We used
ANOVA to assess the statistical significance of the final exper-
imental results. According to Fisher’s F statistic [54], the
observed F-value can be calculated with the original data; the
empirical frequency distribution of a new F-value—that is,
F∗-value—can be obtained through the labels permuted ran-
domly, which belong to a particular group. Thus, the P-value
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Fig. 6. Proposed method with n-channel autoencoder network and each channel comprising an l-layer structure.

TABLE VII
PARAMETER SETTINGS FOR THE PROPOSED METHOD

from the F statistic based upon F∗ is the probability of the true
null hypothesis (H0), which is calculated as the proportion of
the F∗ that is greater than or equal to F, as follows:

P = Numbers(F∗ ≥ Fobserved)

Total Numbers(F∗)
. (18)

IV. EXPERIMENTAL VERIFICATION

We tested all of the algorithms outlined in this section
with MATLAB 2019a with 64-GB memory. The valuation of
parameters can be tuned in every step of the experiment, and
Table VII shows the details.

A. Single Modality

1) Using Forehead EOG: We compared the regression
models that are commonly utilized with EOG features for vig-
ilance estimation: ICAf , MINUSf , ICAfv-MINfh, ELM [55],
bidirectional-ELM (B-ELM) [56], DNNSN [23], and the
proposed method. The three different features of EOGfh-
ICA, EOGfv-ICA, EOGfh-MINUS, and EOGfv-MINUS were
extracted by the MINUS and ICA separation strategies. We
then obtained three types of EOG features, including ICAf ,
ICAfv-MINfh, and MINUSf .

The performance of these regression models on three
types of EOGf features is shown in Fig. 7, including
the mean RMSE/COR (RMSEm/CORm) and RMSEσ /CORσ .
Here, σ represents the SD. The ICA and MINUS meth-
ods have been shown to have the advantage of regressing
high-dimensional features using the big training dataset. The
mean RMSE/COR of the ICAf , ICAfv-MINfh, and MINUSf

is 0.16/0.48, 0.12/0.78, and 0.13/0.72, respectively. The blink
and saccade components can be easily detected by the ICAfv-
MINfh separation method from the EOGf signal, which shows
a better performance, and we use its performance as the bench-
mark. The ELM model is frequently used in regression and has
an effective and trustworthy performance. ELM is inherently
a single-layer feedforward neural network, meaning it can
recognize multiple EOG features. The RMSEm/CORm of the
ELM using EOGf features is improved to 0.13/0.67, 0.13/0.72,
and 0.13/0.73, respectively. DNNSN is another strong learn-
ing method that improves the overall performance of a series
of regressors. We observe that the RMSEm/CORm is greatly
improved to 0.12/0.72, 0.11/0.79, and 0.11/0.78, respectively.

In addition, the performance of our single-modality algo-
rithm with EOGf notably improved to 0.11/0.79 (p <

0.01/p < 0.01, ANOVA), 0.10/0.83 (p < 0.01/p < 0.01,
ANOVA), and 0.10/0.80 (p < 0.01/p < 0.01, ANOVA),
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Fig. 7. Performance using different EOG features. σ represents its STD.

TABLE VIII
EXPERIMENTAL RESULTS FOR SINGLE MODALITY USING FOREHEAD

EOG. THE BEST RESULTS ARE BOLDED

respectively. The mean performances of all compared single-
modal methods using EOG are listed in Table VIII, and the
proposed method for obtaining the best mean performance
of RMSEm/CORm is 0.10/0.81, which far outperformed other
single methods. Our strategy should be seen as a good tech-
nique for detecting blink, glances, and fixation components of
vigilance.

2) Using EEG: The performance of these regressors using
six EEG signals—(EEGf 2, EEGf 5, EEGt2, EEGt5, EEGp2, and
EEGp5)—is shown in Figs. 8 and 9. The mean performances
of all compared single-modal methods using EEG are listed
in Table IX. Here, f , t, and p represent forehead, temporal,
and posterior, respectively. For example, EEGf 5 represents
EEG signals gathered from the forehead site of the brain,
which are separated from the five frequency bands method.

TABLE IX
EXPERIMENTAL RESULTS FOR SINGLE MODALITY USING EEG. THE

BEST RESULTS ARE BOLDED. (a) EEG WITH 2-HZ FREQUENCY

RESOLUTION. (b) EEG WITH FIVE FREQUENCY BANDS

(a)

(b)

After using two approaches—MA and LDS filtering—four
different features of each EEG signal were extracted: DE-
MA, DE-LDS, PSD-MA, and PSD-LDS. We found that the
DE feature has reliably recognized EEG patterns between
low and high-frequency energy due to the comparison regres-
sion models, which include ICA, ELM, B-ELM, DNNSN,
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Fig. 8. Performance using three sites EEG with a 2-Hz frequency resolution. (a1, a2, a3, a4), (b1, b2, b3, b4), and (c1, c2, c3, c4) represent brain sites of
the forehead, temporal, and posterior, respectively. σ represents its STD.

Fig. 9. Performance using three sites EEG with five frequency bands. (a1, a2, a3, a4), (b1, b2, b3, b4), and (c1, c2, c3, c4) represent brain sites of the
forehead, temporal, and posterior, respectively. σ represents its STD.

and the proposed method; using the DE feature therefore
appears to have an effect consistent with that found in previous
studies [57].

We observed that ICA regressor EEG-based vigilance
estimation has a promising performance and the better
RMSEm/CORm of EEGf , EEGt, and EEGp which are
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TABLE X
EXPERIMENTAL RESULTS FOR MULTIMODALITY.

THE BEST RESULTS ARE BOLDED

0.15/0.65, 0.14/0.67, and 0.13/0.70, respectively. We used its
performance as the benchmark. Similarly, the ELM regressor
has performed well on each of the EEG features. We noticed
that the DNNSN approach has a remarkable performance, and
the RMSEm/CORm of EEGf , EEGt, and EEGp is 0.14/0.70,
0.13/0.70, and 0.13/0.72, respectively. Once the proposed
method adds the multichannel autoencoder network to the
regressor model, the performance significantly improves, and
the RMSEm/CORm using every type of EEG feature is
0.11/0.80 (p < 0.01/p < 0.01, ANOVA), 0.11/0.74 (p <

0.01/p < 0.01, ANOVA), and 0.11/0.77 (p < 0.01/p < 0.01,
ANOVA), respectively. Not only did we demonstrate that the
posterior site contains more crucial information for vigilance
assessment, consistent with our previous studies [58]; we also
found that the forehead site contains key information as well.
It is worth noting that the performance we obtained using
the feature extracted with the 5-bands method performed as
well as the 2 Hz method in our strategy. Thus, we verified
the effectiveness of our single-modality strategy for vigilance
estimation using different EEG features.

In short, whether using EOG or EEG, the proposed method
achieves the best results and far outperforms other methods.

B. Multimodality

We used the complementarity characteristic between EOG
and EEG signals to test various multimodal regression meth-
ods with features fusion to assess levels of vigilance: ELM,
B-ELM, autoencoder-ELM (AE-ELM) [52], support vector
regression (SVR) [59], continuous conditional random field
(CCRF) [60], continuous conditional neural field (CCNF) [61],
DNNSN, and the proposed method with two pooling types:
1) Oursap and 2) Oursmp. Table X shows all experimental
results and Oursap and Oursmp are the proposed method, with
average pooling and max pooling, respectively.

The mean RMSE/COR of ELM was significantly improved
to 0.11/0.78, for which performance is much better than for its
single modality. SVR achieves the COR value of 0.83, which
shows that it is a popular and robust regression method in
machine learning.

In addition, we can also observe that the RMSEm/CORm of
the CCNF and CCRF with temporal dependency is 0.10/0.84
and 0.09/0.85, respectively, marking a great improvement in
performance, which proves its ability to predict continuous
vigilance levels. The convolution parameter errors produce the
deviation in the mean estimates, which can be reduced by
early fusion with the max pooling used in the DNNSN model.

Fig. 10. Computational time analysis.

The performance of the DNNSN model obviously improved to
0.09/0.85 and demonstrated its effectiveness.

Compared to other fusion strategies, the proposed method
uses input features extracted by the calculated decoding layer
of the multichannel autoencoder model and uses the sub-
network neurons of multilayer regression models to extract
subspace features and fusion subspace features, based on early
fusion, which could allow it to obtain a nearly 12% boost. The
performance of the proposed multimodality method with aver-
age pooling and max pooling is 0.08/0.88 (p < 0.01/p < 0.01,
ANOVA) and 0.08/0.89 (p < 0.01/p < 0.01, ANOVA),
respectively. Furthermore, from training the original signal
to displaying detection, the proposed method only takes 3 s
to achieve good performance (see Fig. 10), which is nearly
ten times faster than other methods. The robustness of the
proposed method is proven through the lowest RMSEm, the
highest CORm, and the lowest time cost, obtained with two
pooling types in subspace feature combination. All experimen-
tal results of the compared multimodality algorithms perform
better than the single-modality method, and the proposed
multimodal method performs the best of all.

V. CONCLUSION

In this article, we proposed a novel multilayer network
structure for vigilance estimation, MAE-MELMsn, which is
composed of the multichannel autoencoders with subnetwork
neurons for dimensionality reduction and signal reconstruc-
tion. Moreover, compared with other methods of feature
selection, the training of our system achieves higher learning
accuracy. Simultaneously, the higher efficiency of decoding
the brain signals can better identify the specific relationship
between the brain activity and cognitive state, while providing
evidence and support to aid in decoding brain states and under-
standing information processing mechanisms [62]. We then
used mixed features with complementary characteristics. The
proposed multimodality method shows strong performance in
identifying the vigilance states of our brain activity and proves
to work better than other state-of-the-art single modality and
multimodality approaches.

Although eye movement is a promising indicator of arousal
states, eye movement alone is not enough to develop a
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robust vigilance estimation model. Eye movement can be
intentionally controlled by subjects, which causes degraded
performance in prediction. Recently, the robustness of intel-
ligent systems based on machine learning has drawn great
attention [63]. Intentional eye movements could be considered
as adversarial examples in comparison with spontaneous eye
movements. However, we can leverage additional information
from EEG to differentiate spontaneous and intentional eye
movements. The changes in brain activities contribute to early
warnings of reduced vigilance. How to improve the robust-
ness of multimodal vigilance estimation systems need further
systematic investigation.

We noticed that the physiological signal varies from person
to person. If we obtain more experimental samples and select
a larger age range, we can also verify the effectiveness of this
model, undoubtedly providing more convincing results. Due
to research funding and time constraints, however, all subjects
were students recruited from the university campus, with a rel-
atively narrow age range. Using experimental data, we could
work to better understand the relationship between age and
this model. This is the focus of our future work. Meanwhile,
we would like to propose an efficient general method of con-
verting the tabular signals into 2-D shape signals. By doing so,
the CNNs, such as ResNet and DenseNet, could be directly
combined to improve performance.
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