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Abstract—Compared with the rich studies on the motor brain-computer interface (BCl), the recently emerging affective BCI presents
distinct challenges since the brain functional connectivity networks involving emotion are not well investigated. Previous studies on
emotion recognition based on electroencephalography (EEG) signals mainly rely on single-channel-based feature extraction methods.
In this paper, we propose a novel emotion-relevant critical subnetwork selection algorithm and investigate three EEG functional
connectivity network features: strength, clustering coefficient, and eigenvector centrality. The discrimination ability of the EEG
connectivity features in emotion recognition is evaluated on three public emotion EEG datasets: SEED, SEED-V, and DEAP. The
strength feature achieves the best classification performance and outperforms the state-of-the-art differential entropy feature based on
single-channel analysis for the EEG signals. The experimental results reveal that distinct functional connectivity patterns are exhibited
for the five emotions of disgust, fear, sadness, happiness, and neutrality. Furthermore, we construct a multimodal emotion recognition
model by combining the functional connectivity features from EEG and the features from eye movements or physiological signals using
deep canonical correlation analysis. The classification accuracies of multimodal emotion recognition are 95.08 4 6.42% on the SEED
dataset, 84.51 £ 5.11% on the SEED-V dataset, and 85.34 + 2.90% and 86.61 & 3.76% for arousal and valence on the DEAP dataset,
respectively. The results demonstrate the complementary representation properties of the EEG functional connectivity network features
with eye movement data. In addition, we find that the brain networks constructed with fewer channels, i.e., 18 channels, achieve
comparable performance with that of the 62-channel network with respect to multimodal emotion recognition and enable easier setups

for BCI systems in real scenarios.

Index Terms—Affective brain-computer interface, EEG, eye movement, brain functional connectivity network, multimodal emotion

recognition.

1 INTRODUCTION

MOTION plays a crucial role in many aspects of our

daily lives, such as social communication and decision-
making. According to the Gartner hype cycle in 2019 [1],
emotion artificial intelligence (Al) is one of the 21 emerging
technologies that will significantly impact our society over
the next 5 to 10 years. Emotion Al, also known as artificial
emotional intelligence or affective computing [2], aims at
enabling machines to offer the capabilities to recognize,
understand, and process emotions. Compared with the rich
studies on the motor brain-computer interface (BCI), the
recently emerging affective BCI (aBCI) [3] faces distinct
challenges since the brain functional connectivity networks
involving emotions are not well investigated [4]. The aBCI
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technology aims to advance the human-computer inter-
action systems with the assistance of various devices to
detect the affective states from neurophysiological signals.
Therefore, the major challenge facing emotion Al and aBCI
in the primary stage lies in emotion recognition [5].

In recent years, extensive endeavors have been devoted
to emotion recognition. Among a variety of emotion recog-
nition approaches, the modalities used to detect affective
states primarily comprise two categories: the external be-
havioral signals, including facial expression [6], speech [7],
body language, etc., and the internal physiological signals
[8], containing electroencephalography (EEG) [9], electrocar-
diography (ECG) [10]], respiration, galvanic skin response,
etc. These two categories have their own prominent prop-
erties. The external behavioral signals outperform in terms
of convenience of data collection, while the physiological
signals are believed to be more objective and reliable in
conveying emotions. As a result, multimodal emotion recog-
nition has become the major trend, since it may leverage
the complementary representation properties of different
modalities. Nevertheless, most existing studies have focused
on the fusion of visual and audio signals [11] [12], while
few studies have combined the behaviors with physiological
signals [13] [14].

Among the physiological modalities, EEG has exhib-
ited outstanding performance in emotion recognition and
is promising in elucidating the basic neural mechanisms
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Fig. 1. The framework of our proposed multimodal emotion recognition model using EEG-based functional connectivity and eye movement data.
First, the emotion experiment is designed to simultaneously collect the EEG and eye tracking data while the subjects are watching emotional movie
clips. Second, the EEG-based functional connectivity networks are constructed and selected to obtain the emotion-relevant critical subnetworks.
Finally, the EEG functional connectivity network features and eye movement features are extracted and later fused to train the affective model.

underlying emotion [15] [16]. Moreover, the fusion of EEG
and eye tracking data has been shown efficient in multi-
modal emotion recognition, with increasing interests among
research communities [17] [18]. In this paper, we adopt the
EEG signals, along with eye movement data or peripheral
physiological signals, to classify different emotions.

Most existing studies on EEG-based emotion recog-
nition have relied on single-channel analysis [15], [16],
[17], [18], where EEG features are independently extracted
within each EEG channel in different brain regions. In
contrast, studies on cognitive science and neuroimaging
have demonstrated that emotion is a complex behavioral
and physiological reaction that involves circuits in mul-
tiple cerebral regions [19]. In addition, studies in neuro-
science and neuropsychiatry have revealed that patients
with cognitive defect psychophysiological diseases such
as autism, schizophrenia and major depressive disorder
present decreased brain functional connectivity by both
functional magnetic resonance imaging (fMRI) and EEG
[20]. Furthermore, studies on neuroimaging based on fMRI
have indicated that brain functional connectivity may offer
the potential of representing the fingerprints in profiling
individuals [21], as well as the ability of individuals to
sustain attention [22]. These results have provided evidence
for the connection between cognition and brain functional
connectivity. However, few studies have explored the emo-
tion associated brain functional connectivity patterns. The
study of emotion recognition from the perspective of the
brain functional connectivity network remains to be further
investigated and may eventually lead to the understanding
of the underlying neurological mechanisms behind how
emotions are processed in the brain.

In this paper, we aim to investigate the emotion-relevant
brain functional connectivity patterns and evaluate the per-

formance of the EEG connectivity feature for multimodal
emotion recognition with respect to three public datasets:
SEED [17], SEED-V [23], and DEAP [24]. Fig. (1| depicts our
proposed multimodal emotion recognition framework. The
main contributions of our work lie in the following aspects:

1) We propose a novel emotion-relevant critical sub-
network selection algorithm and investigate three
EEG connectivity features: strength, clustering coef-

ficient, and eigenvector centrality.

2) We demonstrate the outstanding performance of the
EEG connectivity feature and its complementary
representation properties with eye movement data
in multimodal emotion recognition.

3) We reveal the emotion associated brain functional

connectivity patterns and the potential of applying
the brain networks based on fewer EEG electrodes
to aBCI systems in real scenarios.

The remainder of this paper is organized as follows.
Section II introduces the related literature regrading multi-
modal emotion recognition and brain functional connectiv-
ity analysis. Section III describes the emotion experimental
design. Section IV presents the proposed multimodal emo-
tion recognition framework based on the brain functional
connectivity. Section V analyzes and discusses the experi-
mental results. Finally, a brief conclusion will be presented
in Section VL

2 RELATED WORK
2.1

Various modalities have been exploited to detect affective
states in the past few decades. With the advent of com-
puter vision and speech recognition, research on emotion
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recognition using facial expression and speech has gained
prevalence [6] [7]. Hasani and Mahoor [25] proposed an
enhanced neural network architecture that consists of a
3D version of the Inception-ResNet network followed by
a long short-term memory (LSTM) unit for emotion recog-
nition from facial expressions in videos. They employed
four databases in classifying different emotions, including
anger, fear, disgust, sadness, neutrality, contempt, happi-
ness, and surprise. Trigeorgis et al. [26] presented an end-
to-end speech emotion recognition framework created by
combining the convolutional neural network (CNN) and
LSTM models. Schirmer and Adolphs [27] studied different
modalities with respect to emotion perception, including
facial expression, voice, and touch. The authors suggested
that the mechanisms of these modalities have their own
specializations and that together, they could lead to holistic
emotion judgment.

Apart from the external behavioral modalities, the inter-
nal physiological signals have also attracted the attention
of numerous researchers due to their objectivity and reli-
ability. Zhang et al. [28] conducted respiration-based emo-
tion recognition using the sparse autoencoder and logistic
regression model. Nardelli et al. [29] performed valence-
arousal emotion recognition based on the heart rate vari-
ability derived from the ECG signals. Atkinson and Cam-
pos [30] improved the EEG-based emotion recognition by
combining the mutual information-based feature selection
methods with kernel classifiers. Liu et al. [31] constructed a
real-time movie-induced emotion recognition system to con-
tinuously detect the discrete emotional states in the valence-
arousal dimension. Zheng et al. [15] systematically evaluated
the performances of different feature extraction, feature
smoothing, feature selection and classification models for
EEG-based emotion recognition. Their results indicated that
stable neural patterns do exist within and across sessions.
Among these modalities, EEG has been proven to be promis-
ing for emotion recognition and demonstrates competence
for revealing the neurological mechanisms behind emotion
processing.

In EEG-based emotion recognition, numerous EEG fea-
tures have been exploited to enhance the performance of
aBCI systems. The conventional EEG features could be
categorized into temporal domain, frequency domain, and
time-frequency domain [32]]. In the temporal domain, the
most commonly used EEG features mainly include the
fractal dimension and higher order crossings [33]]. Due
to the nonstationary essence of the EEG signals and the
fact that raw EEG signals are usually contaminated with
artifacts and noises, the frequency domain features such as
power spectral density (PSD) [34], higher order spectra [33],
and differential entropy (DE) [35] and the time-frequency
domain features such as wavelet features [32] and Hilbert-
Huang spectra [33] [36] have demonstrated outstanding
performance in the EEG-based emotion recognition systems.
However, these conventional EEG feature extraction meth-
ods are based on single-channel analysis, which neglects the
EEG-based functional connectivity networks in association
with different emotions.

2.2 Brain Functional Connectivity

Brain connectivity has long been studied in the fields of neu-
roscience and neuroimaging to explore the essential nature
of the cerebrum. According to the attributes of connections,
brain connectivity could be classified into three modes:
structural connectivity, functional connectivity, and effec-
tive connectivity [37]. These modes separately correspond
to the biophysical connections between neurons or neural
elements, the statistical relations between anatomically un-
connected cerebral regions, and the directional causal effects
from one neural element to another.

Recently, increasing evidence has indicated that a link
does exist between brain functional connectivity and multi-
ple psychophysiological diseases with cognitive deficiency.
Murias et al. [38] found that robust patterns of EEG con-
nectivity are apparent in autism spectrum disorders in the
resting state. Yin et al. [39] concluded that the EEG-based
functional connectivity in schizophrenia patients tends to
be slower and less efficient. Ho et al. [40] indicated that ado-
lescent depression typically relates to the inflexibly elevated
default mode network connections based on fMRI. Whit-
ton et al. [41] suggested that elevations in high frequency
EEG-based functional connectivity may represent a neural
pattern for the recurrent illness course of major depres-
sive disorder. However, few studies have investigated the
links between emotions and brain functional connectivity
networks or conducted emotion recognition from the per-
spective of brain networks. Whether there truly exist specific
connectivity patterns for different affective states remains to
be lucubrated.

In the past years, only a few preliminary research efforts
on EEG-based emotion recognition have attempted to em-
ploy the multichannel EEG analysis approaches. Dasdemir
et al. [42] directly used the connectivity metric of phase
locking value as the EEG feature in distinguishing the
positive and negative emotions. Lee and Hsieh [43] tested
three different connectivity metrics, correlation, coherence,
and phase synchronization index, in classifying the positive,
neutral, and negative emotions. Li et al. [44] also studied
these three emotions by combining the functional connectiv-
ity with local action features. Moon et al. [45] utilized CNN
to model the connectivity matrices constructed by three
different connectivity metrics: correlation, phase locking
value, and phase lag index. However, these studies either
ignored the topology of the brain functional connectivity
networks or failed to analyze the emotion-related functional
connectivity signatures. In our previous study on EEG-
based emotion recognition [46]], we identified the brain
functional connectivity patterns of the three emotions (sad,
happy and neutral) and extracted the topological features
from the brain networks to recognize these emotions. In
this paper, we extend this preliminary work to the three-
class (sad, happy, and neutral), five-class (disgust, fear,
sad, happy, and neutral), and valence-arousal dimension
multimodal emotion recognition tasks.

2.3 Eye Movement Data

Studies in neuroscience and biological psychology have
indicated the relation between emotion and eye movement



data, especially pupil diameter and dilation response. Wid-
mann et al. [47] indicated that emotional arousal by novel
sounds is reflected in the pupil dilation response and the P3
event-related potentials. Oliva and Anikin [48] suggested
that the pupil dilation response reveals the perception of
emotion valence and confidence in the decision-making
process. Moreover, Black et al. [49] showed that the eye
tracking and EEG data in autism spectrum disorders are
atypical during the processes of attention to and cognition
of facial emotions.

In addition, eye movement data could be obtained
through eye tracking glasses which are wearable, portable
and noninvasive. Therefore, eye movement data, as a be-
havioral reaction to emotions, have been widely utilized to
assist with EEG-based emotion recognition in aBCI systems.
Lépez-Gil et al. [18] improved EEG-based emotion recogni-
tion by combining eye tracking and synchronized biometrics
to detect the valence-arousal basic emotions and a complex
emotion of empathy. Zheng et al. [50] evaluated the com-
plementary characteristics of EEG and eye movement data
in classifying positive, neutral and negative emotions by
fusing the DE and pupil diameter features. Lu et al. [17]
extended this preliminary work and systematically exam-
ined sixteen different eye movement features. Furthermore,
their work has been extended to the five emotions by Li et
al. 23] and Zhao et al. [51]], and the discrimination ability
and stability over time of EEG and eye tracking data were
also revealed. However, these research approaches were
all based on single-channel analysis for the EEG signals:
whether there exist complementary representation proper-
ties of EEG connectivity features and eye movement data
remains to be further analyzed.

2.4 Multimodal Frameworks

As a complex psychological state, emotion is reflected in
both physical behaviors and physiological activities [52]
[19]. The collection of external behavioral data is more
convenient than that of internal physiological signals, since
the procedure could be accomplished without involving
any invasive devices. Despite the inconvenience of data
collection, the physiological signals are believed to be more
objective and reliable because the participants cannot forge
their internal activities.

With different modalities exhibiting distinct properties,
modern emotion recognition approaches have the tendency
of combining multiple modalities to enhance the perfor-
mance of aBCI systems. Perez-Gaspar et al. [53] extended
the evolutionary computation of artificial neural networks
and hidden Markov models in classifying four emotions
(angry, sad, happy, and neutral) by combining the speech
with facial expressions. Tzirakis ef al. [54] also fused the
auditory and visual modalities using an end-to-end valence-
arousal emotion recognition model. They applied the CNN
and ResNet models to extract features from speech and
visual signals, respectively, which were then concatenated
and fed into the LSTM model to accomplish the end-to-
end training manner. Ranganathan et al. [55] conducted a
23-class discrete emotion recognition task based on four
different deep belief networks by combining a variety of
modalities, including face, gesture, voice and physiological
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signals. Huang et al. [56] studied the fusion of EEG and facial
expression data using two decision-level fusion strategies,
the sum and production rules, in detecting the four basic
emotions (fear, sad, happy, and neutral).

In recent years, many researchers have suggested that
the combination of EEG and eye tracking data is a promising
approach for recognizing emotions in aBCI systems. Lopez-
Gil et al. [[18] combined EEG with eye tracking and biometric
signals in a synchronized manner to classify emotions using
multiple machine learning methods. Liu et al. [57] applied
the bimodal deep autoencoder (BDAE) neural network in
detecting the three basic emotions (positive, neutral, and
negative) from EEG and eye movement data. Tang et al.
[58]] conducted the same task using bimodal deep denoising
autoencoder and bimodal-LSTM models. Zheng et al. [59]
presented EmotionMeter for detecting the four emotions
(fear, sad, happy, and neutral). Qiu et al. [60] adopted the
deep canonical correlation analysis (DCCA) model as a
multimodal deep neural network for classifying the three-
class, four-class, and valence-arousal emotions. Their results
suggested that DCCA outperforms BDAE and bimodal-
LSTM models in multimodal emotion recognition. In this
paper, we apply the DCCA model to address the multi-
modal emotion recognition task.

3 EMOTION EXPERIMENT DESIGN
3.1 Stimuli

The emotion experiments were designed to simultaneously
record the EEG and eye movement signals of the five pro-
totypical emotions (disgust, fear, sad, happy, and neutral).
Many existing works have indicated the efficiency and
reliability of movie clips in eliciting the subjects” emotions
due to the blending of audio and visual information [17]
[59]]. Therefore, the movie clips were selected as the type of
stimuli to better induce the subjects’ affective states.

During the preliminary experiment, a stimuli pool con-
taining emotional movie clips corresponding with the five
emotions was prepared and then assessed by 20 volunteers
using rating scores ranging from 0 to 5. The higher scores
represented the more successful elicitation of the subjects’
emotions. Eventually, 9 movie clips for each of the five
emotions were selected from the stimuli pool, all of which
received a mean score of 3 or higher. The durations of these
clips range from 2 to 4 minutes.

3.2 Subjects

Sixteen subjects (6 males and 10 females) with normal
hearing and self-reported normal or corrected-to-normal
vision were recruited for our emotion experiments. All
subjects were selected using the Eysenck Personality Ques-
tionnaire (EPQ), which could measure the personality of
an individual in three independent dimensions: Extro-
version/Introversion, Neuroticism/Stability, and Psychoti-
cism/Socialization [61]. Those with extroverted characteris-
tics and stable mood are more readily induced to experience
the intended emotions throughout the experiment in com-
parison with those of other personalities. Hence, subjects
that are more appropriate for the emotion experiments were
selected according to the EPQ feedback.
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Fig. 3. The protocol of the designed emotion experiment.

3.3 Protocol

The emotion experiments were conducted under the lab-
oratory environment. During the emotion experiment, the
subject was required to view the emotional movie clips
and relaxed as much as possible to induce their emotions.
Meanwhile, their EEG and eye movement signals were si-
multaneously collected by the 62-channel wet-electrode cap
and the SMI eye tracking glasses, respectively. The EEG data
were recorded with the ESI NeuroScan System at a sampling
rate of 1000 Hz. The layout of the 62-channel EEG cap is
based on the higher-resolution international 10-20 system.
Fig. [2| presents these wearable devices and the layout of the
62-channel EEG cap.

In this paper, there were 15 trials in total in each ex-
periment, where each of the five emotions corresponds to 3
movie clips. Moreover, each subject was required to perform
three sessions of the experiment on different days with an
interval longer than three days. To better elicit the subjects’
emotions, there was no repetition of movie clips within or
across the three sessions. Thus, the aforementioned 9 movie
clips for each emotion were randomly divided into three
groups and later constructed the three sessions. As studies
in cognitive science have indicated that emotion varies in a
fluent and smooth manner, the order of play of these movie
clips in one experiment was elaborately designed according
to the following criteria: 1) avoiding sudden changes in
emotion, such as clips of the emotion of disgust followed
by clips of happiness; 2) utilizing movie clips of neutral
emotion as a cushion between two opposite emotions.

Fig. B] illustrates the protocol of the designed emotion
experiment. During each trial of the experiment, the movie
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clip was guided by 15 seconds of a brief introduction about
the content and the emotion to be elicited and ended with
15 or 30 seconds of self-assessment and relaxation for the
subjects to mitigate their emotions. Particularly, the resting
time was 30 seconds after disgust or fear emotions, and
15 seconds after the other three emotions. In general, the
duration of one experiment was approximately 55 minutes.

This multimodal emotion dataset is named SEED-V [23],
which is a subset of the public emotion EEG dataset SEEIT_]
The SEED dataset [17] contains 62-channel EEG signals
and eye movement data corresponding to three emotions
(sad, happy, and neutral) from 9 subjects, with each subject
performing the experiments three times. Thus, there are 27
experiments in total and each experiment contains 15 trials,
with 5 movie clips for each of the three emotions.

3.4 Ethic Statement

The emotion experiments have been approved by the Scien-
tific & Technical Ethics Committee of the Bio-X Institute at
Shanghai Jiao Tong University. All of the subjects participat-
ing in our experiments were informed of the experimental
procedures and signed the informed consent document
before the emotion experiments.

4 METHODOLOGY
4.1 Preprocessing

The raw EEG signals collected during the emotion experi-
ments are usually of high resolution and contaminated by
surrounding artifacts, which hampers both the processing
and the analysis of the emotion-relevant brain neural activ-
ities. To remove the irrelevant artifacts, the raw EEG data
were preprocessed with Curry 7 to conduct the baseline
correction, and a bandpass filter between 1 and 50 Hz was
applied. Then, we downsampled the EEG signals to 200 Hz
to expedite the processing procedures. For further explo-
ration of the frequency-specific brain functional connectivity
patterns, the EEG data were filtered with the five bandpass
filters corresponding to the five frequency bands (d: 1-4 Hz,
0: 4-8 Hz, a: 8-14 Hz, (3: 14-31 Hz, and ~: 31-50 Hz).

For the eye movement signals, the artifacts were elimi-
nated using signals recorded from the EOG and FPZ chan-
nels. It has been proven that pupil diameter is subject to
the ambient luminance in addition to the emotion stimuli
materials [62]. Fortunately, according to our observation and
analysis, the pupil diameter exhibits consistency in response
to the same emotional stimuli material across different sub-
jects. Thus, principal component analysis was adopted to
eliminate the luminance reflex of the pupil and to preserve
the emotion-relevant components.

4.2 Brain Functional Connectivity Network

The EEG-based brain functional connectivity networks con-
sist of vertices and edges, which could be represented by the
EEG electrodes and the associations between pairs of EEG
signals from two different channels, respectively [63].

1. http:/ /bemi.sjtu.edu.cn/~seed/
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4.2.1 \Vertex Selection

Although the wet-electrode EEG cap was adopted in our
emotion experiments within the laboratory environment
due to its reliability, the dry-electrode device with fewer
EEG channels offers great convenience and portability in
developing aBClI systems under actual scenario conditions.
Thus, the question of whether the brain functional connec-
tivity networks comprised of fewer EEG channels could
exhibit considerable performance in emotion recognition
remains unexplored.

Previous studies have demonstrated that the DSI-24
wearable sensing EEG headset is quite portable and appro-
priate for real scenarios [64]. There are in total 18 channels
in this device, and the layout of these electrodes is based on
the normal international 10-20 system. Fortunately, these 18
electrodes can be perfectly mapped into the same locations
in the layout of the higher-resolution international 10-20
system. Fig. 4] displays the locations of the 18-channel dry-
electrode reflected in the layout of the 62-channel wet-
electrode device.

In this paper, since the raw EEG signals were acquired
with the 62-channel wet-electrode device, we constructed
the brain connectivity network with 62 vertices in total.
Furthermore, we selected these 18 electrodes and compared
the performances of EEG connectivity features extracted
from the brain networks constructed with two categories
of vertices: 18-channel and 62-channel.

4.2.2 Edge Measurement

To measure the associations between pairs of EEG signals
recorded from different channels, we compared two connec-
tivity metrics in this paper: Pearson’s correlation coefficient
and spectral coherence. The former can measure the linear
relation between two EEG signals x and y, which is defined
as:

cov(z,y)

oy = I 1
P,y 040y 1)

Preprocessed EEG signals (200 Hz)

Channel No.1 e P mshocsm s oty s ity s b o <.

Channel No.2 ;.ww,M\mm\(ww1w.v..wm‘qv«mwwmwwmeww,mvw]wm.m

Channel No.62 et onssbion b S banta -
%/—/
One Sample: a 4-second EEG segment

Computing the associations between
pairs of EEG channels

[t
Brain connectivity %
matrix (62x62)

Fig. 5. lllustration of the procedure for constructing EEG-based brain
functional connectivity networks.

where cov(z,y) denotes the covariance between z and vy,
and o, and o, are the respective standard deviations.

Distinguished from the correlation that measures the
connectivity between two EEG channels in the temporal
domain, coherence can measure the connectivity between
two signals  and y at frequency f in the frequency domain,
which could be written as:

where P,,(f) is the cross power spectral density between

x and y, and P,.(f) and P, (f) are the respective power
spectral densities.

@

4.2.3 Network Construction

In our previous work, we have revealed the complementary
characteristics of the state-of-the-art DE feature and eye
movement data in emotion recognition, where features were
extracted with a 4-second nonoverlapping time window [17]
[51] [59] [65]. Considering further fusion of our proposed
EEG connectivity feature with eye movement data and
comparison with the DE feature, we constructed the brain
functional connectivity network using the same time win-
dow. The detailed procedure of brain network construction
is depicted in Fig.

First, the preprocessed EEG signals were segmented with
a 4-second nonoverlapping time window. As a result, each
sample is represented by a 4-second EEG segment of 62
channels. Since the five bandpass filters were employed
during the preprocessing, each sample actually contains five
4-second EEG segments corresponding to the five frequency
bands.

Second, the associations between pairs of EEG channels
were computed using the connectivity metric (correlation
or coherence) in each frequency band for each sample.
Therefore, each brain network corresponds to a 62 x 62
symmetric connectivity matrix, where elements denote the
association weights between pairs of EEG channels. Since
the value of self-correlation is always equal to 1, elements
on the main diagonal of connectivity matrices are usually
set to zero and will not be used in later analysis [37].

Finally, five brain connectivity networks were acquired
for each sample, corresponding to the five frequency bands.
For the brain networks constructed with 18 channels, there



is no need to repeat the above procedures. We could directly
select the corresponding elements in the 62 X 62 connectivity
matrix to construct the 18 x 18 connectivity matrix.

4.3 Emotion-Relevant Critical Subnetwork Selection

Although the raw EEG signals were preprocessed to remove
the noises, there still remain certain minor artifacts that
may not be eliminated during the preprocessing phase.
Unfortunately, these artifacts may further lead to the weak
associations in the brain networks, which eventually results
in obscureness in profiling the brain network topology. By
convention, this problem is resolved by directly discard-
ing these weak associations according to an absolute or a
proportional threshold after sorting the association weights
[37] [63]. However, this method fails to take the targeted
task into consideration, thus offering no guarantee that
the preserved stronger associations are truly task relevant.
Therefore, we have proposed an emotion-relevant critical
subnetwork selection approach to address this issue.

The goal is to explore the universal emotion-relevant
brain functional connectivity patterns among different sub-
jects. Therefore, we utilized samples in training sets of all
subjects to select the emotion-relevant critical subnetworks.
Nevertheless, it should be mentioned that the affective
models trained in this paper are subject-dependent. For
further analysis of the brain connectivity patterns in dif-
ferent frequency bands, we selected a total of five critical
subnetworks corresponding to the five frequency bands.
Assuming that L is the set of emotion labels, there are thus
|L| categories of emotions. The emotion-relevant critical
subnetwork selection approach for one specific frequency
band is summarized into the following three phases:

1) Averaging phase: all brain networks in training sets
are averaged over all samples and all subjects for
each emotion: thus, |L| averaged brain networks
corresponding to | L| emotions could be obtained.

2) Thresholding phase: for each averaged brain net-
work, the same proportional threshold is applied to
solely preserve the strongest associations. Thus, we
attain critical edges for each emotion.

3) Merging phase: along with the original vertices, the
critical edges in all |L| averaged brain networks are
merged together to construct the emotion-relevant
critical subnetwork.

Here, the proportional threshold represents the proportion
of the preserved connections relative to all connections in
the brain network. Particularly, the threshold value was
tuned as a hyperparameter of the affective models, ranging
from [0.0, 1.0] with step size of 0.01.

This procedure is also described in Algorithm[1} Suppose
that the connectivity matrices X along with corresponding
labels Y in the training sets for one frequency band are
defined as:

X ={a"}, (" eRVN) v ={y 11, (y' € L), (3)

where M and N represent the number of samples and the
number of vertices, respectively.
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Algorithm 1 The proposed emotion-relevant critical subnet-
work selection algorithm in a frequency band

Input: Connectivity matrices X, labels Y, label set L,
threshold ¢, and vertices V'
Output: The emotion-relevant critical subnetwork G*
1: foreachc € L do
2:  Average matrices with the same emotion label c:
T, = meanyi::C(xi)

3:  Sort the upper triangular elements of matrix z. based
on the absolute value of the association weights:
x = sort(abs(triu(z.)))

4:  Derive the critical edges corresponding to the
strongest associations using threshold t:
E. =index(zi(1:t+ N * (N —1)/2))
5: end for
: Merge the critical edges of all emotions:
E* = unioneer (E.)

=X}

7: Construct the emotion-relevant critical subnetwork:
G* = (V,E")

8 return G*

4.4 Feature Extraction
4.4.1 EEG Functional Connectivity Network Features

In this paper, we extracted EEG features from the perspec-
tive of brain functional connectivity networks. The essence
of the emotion-relevant critical subnetwork primarily con-
sists in the network topology. According to the five critical
subnetworks in the five corresponding frequency bands,
we could derive the critical connectivity matrices for each
sample in the entire dataset. Precisely, if one edge belongs
to the critical subnetwork, the corresponding association
weight in the matrix will remain unmodified; otherwise, it
will be set to zero, thus simulating the process of discarding
this edge from the brain network. The critical connectivity
matrices were subsequently fed into the Brain Connectiv-
ity Toolbox [37] to extract the three topological features:
strength, clustering coefficient, and eigenvector centrality.

Assume that the selected emotion-relevant brain func-
tional connectivity network of one sample is regarded as an
indirect graph G = (V, E*), where V and E* represent the
sets of vertices and critical edges, respectively. There are in
total NV vertices in the brain network. Suppose that the corre-
sponding symmetric connectivity matrix of G is A = (a;;),
where i,j = 1,2,..., N, a;; denotes the association between
two vertices v; and v;, and a;; = aj;. According to [37],
we could provide rigorous definitions for the three EEG
functional connectivity network features as below.

The strength feature Fg is a basic measurement of the
network topology, which could be written as:

N N N N
Fg = 8i+’i:178i7|i:17 z Si+, Z Si—| (4)
i=1 i=1

where s; and s;_ represent the sum of the positive and
negative associations connected to vertex v;, respectively,



and are computed as:

sit = Y, ai, &)
a;;>0
j=1,2,...,N
S;— = Z Q- (6)
a;;<0

ji=1,2,...,N

The clustering coefficient feature Fic is a measurement
of the brain functional segregation that primarily quantifies
the clusters within the brain network, which is defined as:

N N N N
Fo = [Ci+|i:1,ci—{i:1, > City 2 Ci—} ; @)
=1 iz

where ¢;1 and ¢;_ represent the clustering coefficient vec-
tor for the positive and negative associations of vertex v;,
respectively. The clustering coefficient is equivalent to the
fraction of triangles around a vertex and is calculated as:

2t
C’r‘r - kz(kz _ 1)’ (8)
2t;_
Ci— = m» )

where k; denotes the total numbers of neighbors for vertex
v;, and ty4 and t;_ are the positive and negative weighted
geometric means of triangles around v;, respectively. The
triangles around a vertex are represented as:

tip= > (aiamap)'’?, (10)
j heM;
Aj5,Qip,a5h >0
tio= Y. (ayama)'?, 11)

j,hEM;
iy aihsap <0
where M; = {vj|e;; € E*} is the neighborhood of vertex v;.
The eigenvector centrality feature Fr evaluates the sig-
nificance of an individual vertex in interacting with other
vertices, facilitating integration, and thus serving a crucial
role in network resilience. The eigenvector centrality score
of vertex v; could be defined as:

LY R

kEM

(12)

where M; is the neighborhood of v;. This equation could
be easily transformed to the eigenvector equation using the
vector notations: AFg = AFg. In general, the dimensions of
the strength, clustering coefficient, and eigenvector central-
ity features in each frequency band are 2N + 2, 2N + 2, and
N, respectively.

4.4.2 Eye Movement Features

First, eye movement parameters were calculated using the
BeGaZEﬁ analysis software of the SMI eye tracking glasses,
including pupil diameter, fixation duration, blink duration,
saccade, and event statistics. Subsequently, the statistics of
these eye movement parameters were derived, thus obtain-
ing the 33-dimensional eye movement feature. The detailed
description of the extracted eye movement feature could be
found in our previous work [17] [51].

2. https:/ / gazeintelligence.com/smi-software-download
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Fig. 6. Architecture of the DCCA model.

4.5 Classification

As aforementioned, the variation of emotion is fluent and
smooth, which should be reflected in the attributes of the
extracted features. In addition, the extracted EEG features
are typically of high dimensionality and may contain un-
related and redundant information, which increases the
unnecessary computation and time costs. Hence, a feature
smoothing method, linear dynamical system (LDS) [66], and
a feature selection algorithm, minimal redundancy maximal
relevance (mRMR) [67], were applied to tackle this issue
before feeding features into the classifier.

4.5.1 Deep Canonical Correlation Analysis Model

Fig. [f] presents the architecture of the DCCA model, which
comprises three parts: the stacked nonlinear layers (L2 and
L3), CCA calculation, and feature fusion layer. The DCCA
model could learn shared representations of high correlation
from multimodal data [68].

Assume that the transformed features for two modalities
X1 and X5 are separately denoted by Hy = f1(X7;61) and
Hy = f2(X3;02), where f; and f; are the respective non-
linear transformations, and #; and 65 are the corresponding
parameters. Thus, the optimization function is written as:

(07,05) = argmax corr(f1(X1;01), f2(X2;602)).  (13)

01,02

Suppose that the centered data matrices are H, and H,,
and 7 and 77 are the respective regularization parameters:
hence, the correlation of the transformed features could be
calculated as:

corr(Hy, Hy) = ||T |4 = tr(T'T)"/?, (14)
where
T =37"250,55,72
N 1 - _
Y91 = ——HH/+nl,
m—1
. 1 (15)
222 = 7H2H2 + 7’2]
m—
- 1
Y= 7H1H2
m—

In particular, the gradient of corr(H;, Hz) could be com-
puted using singular value decomposition. The parameter
updating is accomplished by using the negative value of
correlation as the loss function. Thus, minimizing loss is
equivalent to maximizing correlation. The feature fusion
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TABLE 1
Mean accuracy (%) and standard deviation (%) of the EEG connectivity features in classifying the five emotions with respect to the SEED-V
dataset.
Vertices 62-Channel 18-Channel
Edges Correlation Coherence Correlation Coherence
Stat. Mean | Std. | Mean | Std. | Mean | Std. Mean | Std.
Features

Strength 74.05 7.09 71.89 | 720 | 72.63 8.26 7146 | 6.08

Clustering Coefficient 56.35 11.14 71.18 782 | 51.94 8.63 64.14 6.10

Eigenvector Centrality | 68.78 | 9.39 60.80 | 7.18 | 67.89 | 11.13 | 65.57 | 7.38

layer is defined as the weighted average of the two trans-
formed features [60]]. Finally, the fused multimodal feature
is fed into the support vector machine (SVM) to train the
affective model.

In this paper, the cross validation and grid search meth-
ods were adopted to tune the hyperparameters. Supposing
that the numbers of nodes in L1, L2, and L3 layers of DCCA
are n1, nz, and ng, respectively, these three hyperparameters
are searched in the space where n; > ns > ng and
ni,n2,ng € {25,26,27 28} The learning rate is tuned from
1078 to 1074

4.5.2 Experiment Setups

In this paper, we evaluate the proposed approaches on three
public datasets: SEED [17], SEED-V [23], and DEAP [24]. For
the SEED dataset, the three-class (sad, happy, and neutral)
emotion classification task is conducted. The training and
test sets are the first 9 trials and the last 6 trials, respectively,
which is the same as in [17] [57] [58] [65]. For the SEED-V
dataset, the five-class (disgust, fear, sad, happy, and neutral)
emotion classification task is performed with a three-fold
cross validation strategy, which follows the same setups as
in [51] [65].

The DEAP dataset contains 32-channel EEG signals and
8-channel peripheral physiological signals from 32 subjects
in the valence-arousal dimension. Each subject watched 40
one-minute music videos. The EEG signals were prepro-
cessed with a bandpass filter between 4 and 45 Hz. For the
DEAP dataset, we build the brain networks using solely 32
channels in the four frequency bands (without the § band)
with a 2-second nonoverlapping time window. The periph-
eral physiological feature is 48-dimensional. In addition,
two binary (arousal-level, valence-level) classification tasks
were conducted with ten-fold cross validation strategy. The
setups for the DEAP dataset are in accordance with [57] [58]
[65].

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Discrimination Ability

To demonstrate the discrimination ability of the EEG func-
tional connectivity network features in emotion recognition,
we conduct EEG-based emotion recognition for the three
datasets.

5.1.1 Experimental Results on the SEED-V Dataset

For the SEED-V dataset, we constructed the EEG-based
brain functional connectivity networks using two different
categories of vertices and two different edge measurements,
then extracted three EEG functional connectivity network
features from the brain networks.

Table [1| presents the five-class emotion recognition per-
formance of these features. We could observe that the
strength feature exhibits outstanding performance regard-
less of the number of vertices and connectivity metric. This
may be because the strength feature could intuitively re-
flect the emotion associated connectivity of the entire brain
regions. In general, the strength and eigenvector centrality
features exhibit higher accuracy with correlation as the con-
nectivity metric, whereas the clustering coefficient feature
exhibits better performance with coherence.

The features extracted from 18-channel-based brain net-
works exhibit considerable performance compared with
those of 62-channel networks, which indicates that the EEG
functional connectivity network features extracted from the
brain networks constructed with fewer channels are promis-
ing for actual scenarios of emotion recognition applications
in aBClI systems.

In our previous work [46], we have demonstrated that
the EEG functional connectivity network features consid-
erably outperform the PSD feature and that they are su-
perior to those directly using the connectivity metrics as
features. In this paper, the best classification accuracy of
74.05 & 7.09% achieved by the strength feature defeats the
value of 69.50+10.28% attained by the single-channel-based
state-of-the-art DE feature in the work of [51] for the same
dataset.

To further analyze the capability of the best feature, the
strength, in recognizing each of the five emotions, the con-
fusion matrices are displayed in Fig.[7} It could be observed
that the strength feature is superior in detecting the emotion
of happiness, followed by the emotions of neutrality and
fear with correlation as connectivity metric. In contrast,
from the perspective of coherence as connectivity metric,
the strength feature exhibits the best performance in recog-
nizing the fear emotion and exhibits similar performances
with respect to the emotions of sadness, neutrality, and
happiness.

Generally, the strength feature with correlation as con-
nectivity metric could achieve better performance in clas-
sifying all emotions, except sadness, in comparison with
that of coherence. Overall, the EEG feature exhibits fair per-
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Fig. 7. The confusion matrices of the strength feature extracted from
the brain networks constructed with two categories of vertices and two
connectivity metrics.

formance in recognizing the emotion of disgust and could
be easily confused by the sad and neutral emotions, the
results for which are in accordance with previous findings
[51]. In addition, the strength feature with the 18-channel
approach exhibits considerable performance compared with
that of the 62-channel approach. Particularly, the strength
feature with the 18-channel approach could achieve the
same classification accuracy of 84% with that of the 62-
channel approach with respect to recognizing the emotion
of happiness.

5.1.2 Experimental Results on SEED and DEAP Datasets

On SEED and DEAP datasets, we utilize the best EEG func-
tional connectivity network feature, the strength, to further
verify its discrimination ability in classifying emotions.

On the SEED dataset, the three-class emotion recognition
accuracy achieved by the strength feature is 80.17 + 7.12%,
which is higher than the value of 78.51 + 14.32% [17]
attained by the DE feature. On the DEAP dataset, the perfor-
mances of the strength feature for two binary classification
tasks (arousal-level and valence-level) are 73.42 + 4.67%
and 76.10 £ 4.49%, respectively. These results considerably
outperform those of 62.0% and 57.6% [24] achieved by the
PSD feature, as well as those of 68.28% and 66.73% [69]
attained using the capsule network.

These results demonstrate the discrimination ability of
the EEG functional connectivity network features in classi-
fying three-class emotions (sad, happy, and neutral), five-
class emotions (disgust, fear, sad, happy, and neutral), and
valence-arousal dimension. Additionally, the strength fea-
ture outperforms the most commonly used PSD feature and
the state-of-the-art DE feature.

5.2 Complementary Representation Properties

In this section, the DCCA model is adopted to combine the
EEG signals with other modalities for multimodal emotion
recognition with respect to the three datasets. Here, the
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best EEG functional connectivity network feature, strength
with correlation as connectivity metric, is utilized for the
evaluation.

5.2.1 Experimental Results on the SEED-V Dataset

The combination of EEG and eye movement data for the
SEED-V dataset was implemented using two different fu-
sion strategies: feature-level fusion (FLF) and DCCA. The
FLF is a direct concatenation of the two modalities’ fea-
tures. The experimental results are displayed in Table
The best classification performance values (%) based on
the EEG connectivity feature, eye movement data, FLF, and
DCCA approaches are 74.05£7.09, 65.21£7.60, 78.03+£6.07,
and 84.51+5.11, respectively. These results indicate that
the combination of the EEG connectivity feature and eye
movement data could enhance the performance of five-class
emotion recognition. Moreover, the DCCA model may find
the shared space to be more related to emotion. In addition,
the fusion based on the 18-channel EEG connectivity feature
and eye movement data also achieves considerable classifi-
cation performance.

TABLE 2
Performance (%) of two single modalities and two multimodal fusion
strategies in classifying the five emotions with respect to the SEED-V

dataset.

Vertices 62-Channel 18-Channel
Stat. Mean | Std. | Mean | Std.
EEG 7405 | 7.09 | 72.63 | 8.26
EYE 65.21 | 7.60 | 6521 | 7.60
FLF 78.03 | 6.07 | 78.02 | 7.30

DCCA 84.51 | 5.11 | 84.45 | 6.10

Table (3| presents the performance of our proposed EEG
feature compared with the single-channel-based state-of-
the-art DE feature [51] [65] for the multimodal emotion
recognition task with respect to the SEED-V dataset. These
results reveal that our proposed EEG connectivity feature
outperforms the DE feature in combination with eye move-
ment data to classify the five emotions, whether using
the 62-channel or 18-channel-based functional connectivity
networks.

TABLE 3
Classification performance (%) of different works in multimodal emotion
recognition on the SEED-V dataset.

Works Method | Mean | Std.
FLE | 73.65 | 890
Zh BT

ao et al. [51] BDAE | 79.70 | 4.76
Max | 7317 | 927
Liu et al. [65] Fuzzy | 7324 | 8.72
DCCA | 83.08 | 7.11
FLE | 7803 | 6.07

Our method (62-channel
ur method (62-channel) | — =~ ——g ey
FLF | 78.02 | 7.30

Our method (18-channel
ur method (18-channel) | — =~ —— =79

To investigate the capabilities of EEG connectivity fea-
ture and eye movement data in detecting each specific emo-
tion, the confusion matrices are displayed in Fig. |8 Here,



the EEG feature is the strength feature with 62 channels and
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Fig. 8. Confusion matrices of five-class emotion recognition using: (a)
eye movement data, (b) EEG signals, (c) FLF, and (d) DCCA models.

It could be observed that both EEG and eye movement
data exhibit potential in classifying the emotions of fear,
happiness, and neutrality. In particular, the EEG connec-
tivity feature dominates the recognition of the happiness
emotion, while eye movement data excel at detecting the
fear emotion. The confusion graph of these two modalities
is also presented in Fig. [9}

w
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0.08, 0.18

0.82, 0.83 0.59, 0.48

W EEG signals Il Eye movement data

Fig. 9. Confusion graph of the EEG functional connectivity network
feature and eye movement data in classifying the five emotions: disgust,
fear, sadness, happiness, and neutrality.

In comparison with the single modality affective model,
the last two confusion matrices in Fig. |8| indicate that the
multimodal fusion strategies could indeed improve the clas-
sification performance for all of the five emotions. These re-
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sults demonstrate the complementary representation prop-
erties of the EEG connectivity feature and eye movement
data in classifying the five emotions.

5.2.2 Experimental Results on SEED and DEAP Datasets

The classification performances of our work and several
existing works with respect to the SEED dataset are dis-
played in Table [@ The existing works are based on the DE
feature and eye movements. We could observe that the best
performance of 95.08 + 6.42% is achieved by our work,
which combines the strength feature with eye movement
data to detect three emotions (happiness, neutrality, and
sadness). These results further verify that the combination
of EEG and eye movements could enhance the classification
performance.

TABLE 4
Classification performance (%) of different works in multimodal emotion
recognition with respect to the SEED dataset.

Works Method Mean | Std.

FLF 8370 | -

Luetal. Fuzzy 87.59 -
Song et al. [70] DGCNN 9040 | 849
Liu et al. [57] BDAE 91.01 | 891
Tang et al. [58] | Bimodal-LSTM | 93.97 | 7.03
Liu et al. [65] DCCA 94.58 | 6.16
Our method DCCA 95.08 | 6.42

Table [5| presents the classification performances of our
work and several existing works with respect to the DEAP
dataset. The existing works are based on the combination of
peripheral physiological features with the PSD or
DE features. The highest classification accuracy
of the two binary classification tasks, 85.34 £+ 2.90% for the
arousal-level and 86.61 4 3.76% for the valence-level, are
both obtained by our work. These results reveal that the
strength feature is also superior to the PSD and DE features
in fusion with peripheral physiological signals.

TABLE 5
Classification performance (%) of different works in multimodal emotion
recognition on the DEAP dataset.

Arousal Valence

Works Method Mean | Std. | Mean | Std.
Xingetal. [71] | SAE-LSTM | 7438 | - | 8L10 [ -
Liu et al. [57] BDAE 80.50 | 3.39 | 8520 | 447
Tang et al. [58] | Bimodal-LSTM | 83.23 | 2.61 | 8382 | 5.01
Yin et al. [72 MESAE 84.18 - 83.04 -
Liu et al. [65 DCCA 8433 | 2.25 | 85.62 | 3.48
Our method DCCA 85.34 2.90 86.61 3.76

5.3 Critical Frequency Bands

In this section, we evaluate the critical frequency band of the
EEG functional connectivity network feature on the SEED-V
dataset.

Fig. 10| presents the classification performance of differ-
ent frequency bands using the strength feature with correla-
tion as the connectivity metric. The result demonstrates that



the 8 and ~y frequency bands are superior in classifying the
five emotions in comparison with other bands, which is in
accordance with the results attained by the DE feature [34]
[46]. Additionally, the frequency bands with the 18-channel
approach achieve comparable performance with that of
the 62-channel approach, which implies the possibility of
applying 18 electrodes to detect emotions in real scenario
applications.
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Fig. 10. Classification performance (%) of different frequency bands
using the strength feature with two different categories of vertices.

5.4 Brain Functional Connectivity Patterns

In this section, we investigate the brain functional connec-
tivity patterns based on the SEED-V dataset. The emotion-
relevant critical subnetworks are selected through three
phases: averaging, thresholding, and merging. The num-
bers of subnetworks attained after each phase are 25, 25,
and 5, respectively. Specifically, 25 corresponds to the five
emotions in the five frequency bands, while 5 refers to the
five frequency bands, since the critical connections of the
five emotions in each frequency band are merged together
during the third phase.

In this paper, the 25 subnetworks attained after the
thresholding phase are adopted to analyze the frequency-
specific brain functional connectivity patterns in associa-
tion with the five emotions. To analyze both the positive
and negative connections, we visualize the brain functional
connectivity networks based on the connectivity metric of
correlation.

Considering that the subnetworks are selected using
samples from training sets of all participants and that a
three-fold cross validation strategy is utilized, the emotion-
relevant critical subnetworks are calculated three times. The
results demonstrate that stable connectivity patterns are
exhibited across these three calculations.

Fig. [11] presents the 25 critical subnetworks associated
with the five emotions in the five frequency bands aver-
aged over three folds. For better analysis of the distinct
connectivity patterns for each emotion in each frequency
band, we display all of the critical connections except for
the intersections among the five emotions.

It could be observed that the positive correlation connec-
tivity is much higher in the frontal lobes in the § band for the
negative affective states, including the emotions of disgust,
fear, and sadness. In particular, for the disgust emotion,
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stronger positive connectivity is exhibited in the ~ bands
within both the left and right brain regions, and stronger
negative connectivity is observed between the left and right
brain regions. However, the fear emotion in the v band is
dominated by the stronger negative connectivity, and there
are much weaker positive connections compared with those
of the disgust emotion. In addition, much more positive
connectivity in the 6 band is exhibited for the fear emotion.

The fact that the functional connectivity patterns are
quite similar for the sad and neutral emotions could account
for the confusion between the sad and neutral emotions,
which is consistent with previous findings [23] [34]. Never-
theless, the connectivity in the 6 band tends to be positive
within the frontal areas and negative in the left brain regions
for the sadness emotion, while negative in larger brain areas
for the neutral emotion.

In terms of the happiness emotion, the entire cerebral
areas are much more active in the § band with both positive
and negative correlation connectivity. Moreover, in the 6
band, negative connectivity is revealed between the frontal
and parietal lobes, with positive connectivity between the
frontal and temporal lobes. In the v band, the functional
connectivity patterns for the emotions of happiness, fear,
and disgust are more similar, which may be originated
from the fact that amygdala voxels contribute to these three
emotions [73]. Overall, these results are in accordance with
findings in the literature based on fMRI that the brain
regions contributing to the emotion classification are pre-
dominated in the frontal and parietal lobes [73].

6 CONCLUSION

In this paper, we have proposed a novel emotion-relevant
critical subnetwork selection algorithm and evaluated three
EEG connectivity features (strength, clustering coefficient,
and eigenvector centrality) on three public datasets: SEED,
SEED-V, and DEAP. The experimental results have revealed
that the emotion associated brain functional connectivity
patterns do exist. The strength feature is the best EEG
connectivity feature and outperforms the state-of-the-art
DE feature based on single-channel analysis. Furthermore,
we have performed the multimodal emotion recognition
using the DCCA model based on the EEG connectivity
feature. The classification accuracies are 95.08 £ 6.42% on
the SEED dataset, 84.51£5.11% on the SEED-V dataset, and
85.344:2.90% and 86.6143.76% on the DEAP dataset. These
results have demonstrated the complementary representa-
tion properties between the EEG connectivity feature and
eye movement data. Additionally, the results have indicated
that the brain functional connectivity networks based on the
18-channel approach are promising for multimodal emotion
recognition applications in aBCI systems under actual sce-
nario situations.
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