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Abstract— Previous studies on EEG-based emotion recogni-
tion mainly focus on single-channel analysis, which neglect the
functional connectivity between different EEG channels. This
paper aims to explore the emotion associated functional brain
connectivity patterns among different subjects. We proposed
a critical subnetwork selection approach and extracted three
topological features (strength, clustering coefficient, and eigen-
vector centrality) based on the constructed brain connectivity
networks. The experimental results of 5-fold cross validation on
a public emotion EEG dataset called SEED indicate that the
common connectivity patterns associated with different emo-
tions do exist, where the coherence connectivity is significantly
higher at frontal site in the alpha, beta and gamma bands for the
happy emotion, at parietal and occipital sites in the delta band
for the sad emotion, and at frontal site in the delta band for the
neutral emotion. In addition, the results demonstrate that the
topological features considerably outperform the conventional
power spectral density feature, and the decision-level fusion
strategy achieves the best classification accuracy of 87.04% and
the corresponding improvement of 3.78% in comparison with
the state-of-the-art using the differential entropy feature on the
same dataset.

I. INTRODUCTION

Emotion recognition plays a crucial role in pursuit of
emotional intelligence, which is an interdisciplinary research
involving many fields, such as neuroscience, psychiatry and
artificial intelligence. To date, various modalities convey
emotional information and are employed in emotion recog-
nition. Among these modalities, the electroencephalography
(EEG) signal with objective and effective evaluation has
been widely utilized to develop affective brain-computer
interaction systems.

However, previous studies on EEG-based emotion recog-
nition rely heavily on single-channel analysis. Specifically,
features are usually extracted independently from each EEG
channel, such as the most commonly used power spectral
density (PSD) and differential entropy (DE) [1][2]. These
features simply reflect neural activities within single EEG
channel, which neglect the functional connectivity between
EEG channels in different brain regions. In contrast, Mauss
and Robinson [3] have suggested that emotion processing
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should be considered as involving distributed circuits rather
than specific brain regions in isolation. Besides, EEG has
been pointed to decreased functional connectivity between
cortical regions in various psychophysiological diseases with
cognitive deficits, such as autism, schizophrenia and major
depressive disorder [4]. Therefore, exploring emotion as-
sociated functional brain connectivity patterns is of great
significance and has a high potential in revealing the neural
mechanisms underlying emotion processing.

Among a few preliminary studies on EEG-based emo-
tion recognition that attempted to exploit the connectivity
between EEG channels, Song et al. [5] modeled the multi-
channel features based on the dynamical graph convolutional
neural networks. However, neither did they explicitly use
the connectivity nor analyze the connectivity patterns. While
Chen et al. [6] and Lee et al. [7] directly used connectivity
indices as features, including correlation, coherence, phase
synchronization, and mutual information, they did not take
the brain network topology into account. Therefore, we aim
to identify emotion associated functional brain connectivity
patterns and exploit the topological properties of the brain
network to classify three emotions (happy, neutral, and sad).

Fig. 1. The framework of our proposed approach

The framework of our proposed approach is depicted in
Fig. 1. The working process of our framework consists of
three main steps: 1) brain networks are constructed from the
preprocessed EEG data; 2) critical subnetworks are selected
using training dataset; and 3) brain connectivity matrices
comprised of critical connections are employed to extract the
topological features, which are further fed into the classifier
to train the affective models.
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II. EXPERIMENT SETUP

The performance of our proposed approach is evaluated on
a public emotion EEG dataset called SEED1, which contains
EEG signals of three emotional states (happy, neutral, and
sad) from 15 subjects. During each experiment, while the
subject was watching emotional movie clips, the EEG signals
were simultaneously recorded with a 62-channel electrode
cap at a sampling rate of 1000 Hz. Each subject was required
to perform the experiment for three sessions on different
days, and thus there are 45 experiments in total.

III. METHODS

A. Preprocessing

The raw EEG data were first downsampled to 200 Hz. In
order to investigate the frequency-specific connectivity pat-
terns, the EEG data were then processed with five bandpass
filters corresponding to the five frequency bands (δ: 1-4 Hz,
θ: 4-8 Hz, α: 8-14 Hz, β: 14-31 Hz, and γ: 31-50 Hz).

B. Feature Extraction

1) Functional Brain Network Construction: In EEG-
based functional brain network, nodes are represented by
EEG channels and links are the connections between pairs
of channels [8]. In this paper, there are totally 62 nodes, and
two connectivity indices are adopted, Pearson’s correlation
coefficient and spectral coherence [7], which can measure
the connectivity between EEG channels in temporal domain
and frequency domain, respectively.

For further comparison with the performance achieved by
the conventional PSD and DE features which were extracted
within a time window of 1 second [9], we constructed the
brain network using the same window. As a result, each sam-
ple consists of 1-second EEG segment of 62 channels. After
EEG signals were preprocessed with the five bandpass filters,
the connectivity between pairs of EEG signals was calculated
in each frequency band for each sample. Therefore, each
brain network can be represented by a 62 × 62 symmetric
connectivity matrix, and five networks were obtained for each
sample corresponding to the five frequency bands.

2) Critical Subnetwork Selection: Since many weak con-
nections may obscure the profile for the network topology,
the conventional procedure directly discarded these con-
nections based on an absolute or a proportional threshold
[10]. However, considering that not all of the preserved
connections are emotion relevant, we proposed an approach
called critical subnetwork selection to identify the common
emotion associated connectivity patterns among different
subjects. In this paper, the training datasets from all the 45
experiments were exploited together to select the five critical
subnetworks corresponding to the five frequency bands.

Assume that the connectivity matrices X and the corre-
sponding labels Y in the training dataset of one frequency
band are defined as follows:

X = {xi}Mi=1 (xi ∈ RN×N ), Y = {yi}Mi=1 (yi ∈ L), (1)

1http://bcmi.sjtu.edu.cn/˜seed/

where M and N denote the number of samples and nodes,
respectively, and L is the set of emotion labels. The critical
subnetwork selection for one frequency band is described in
Algorithm 1 and presented in Fig. 2.

Algorithm 1 The proposed critical subnetwork selection
approach for one frequency band
Input: The connectivity matrices X , the labels Y , the

threshold t, and the nodes of the original network V
Output: The critical subnetwork G∗

1: for each c ∈ L do
2: Average the matrices with the same emotion label c:

xc = meanyi==c(x
i)

3: Sort the upper triangular entries of the matrix xc based
on the absolute value of the connection weights:

x∗c = sort(abs(triu(xc)))
4: Preserve the indices of the strong connections accord-

ing to the proportional threshold t:
Ec = index(x∗c(1 : t ∗N ∗ (N − 1)/2))

5: end for
6: Derive the critical connections, which are defined as the

union set of the preserved connections in all classes:
E∗ = unionc∈L(Ec)

7: Construct the critical subnetwork: G∗ = (V,E∗)
8: return G∗

Fig. 2. Critical subnetwork selection for one frequency band

3) Topological Feature Extraction: Based on the five
critical subnetworks, we can derive the connectivity matrices
comprised of critical connections for each sample in the
whole dataset. Then, we employed these matrices to extract
three topological features (strength, clustering coefficient,
and eigenvector centrality) by using the Brain Connectivity
Toolbox [10]. As aforementioned that we adopted two con-
nectivity indices (correlation and coherence), there are totally
six different connectivity features evaluated in this paper.

C. Classification

Before feeding features into the classifier, a feature
smoothing approach, linear dynamic system (LDS) [2], and
a feature selection approach, minimal redundancy maximal
relevance (mRMR) [9], were applied to filter out unrelated
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features and diminish the curse of dimensionality, respec-
tively. The support vector machine (SVM) with linear kernel
was used as a classifier to train the affective model for each
experiment. The 5-fold cross validation strategy and the grid
search method were adopted to tune the threshold value, the
dimension of features, and the learning rate of SVMs.

Furthermore, the feature-level fusion (FLF) strategy was
utilized to concatenate the three topological features to train
the model. In addition to the FLF, three decision-level fusion
(DLF) strategies (max, sum, and fuzzy) were also employed
to combine the best topological feature and the state-of-the-
art DE feature to enhance the recognition performance.

IV. RESULTS AND DISCUSSION
A. Classification Performance

We first evaluated the three topological features and the
FLF approach using two different connectivity indices. The
mean classification accuracy and the standard deviation in
percentage (%) are presented in Table I. We can observe
that the strength feature performs the best in terms of mean
accuracy regardless of the connectivity index, followed by
clustering coefficient and eigenvector centrality. Moreover,
features with correlation as the connectivity index achieve
slightly better performance than those with coherence.

TABLE I
THE CLASSIFICATION PERFORMANCE OF THREE TOPOLOGICAL

FEATURES WITH TWO DIFFERENT CONNECTIVITY INDICES

Features Correlation Coherence
Strength 81.53 ± 7.61 81.04 ± 7.58

Clustering Coefficient 80.11 ± 8.23 78.84 ± 8.38
Eigenvector Centrality 77.86 ± 8.24 76.83 ± 7.51
Feature-Level Fusion 79.16 ± 8.85 78.15 ± 8.45

The confusion matrices for the strength feature with two
connectivity indices are depicted in Fig. 3. We can see that
the happy emotion can be identified with a relatively higher
accuracy and the sad emotion is the most difficult to be
distinguished, which is consistent with our previous findings
[2]. Besides, the result reveals that correlation outperforms
coherence in quantifying the connectivity for all the three
emotions. As shown in Fig. 4, the strength feature is also
employed to evaluate the performance of different frequency
bands. The results demonstrate that the gamma and beta
bands are the critical frequency bands regardless of the
connectivity index, which is in accordance with the results
in our previous work [2].

Furthermore, we compared the topological features with
two other categories of features. One is the most commonly
used features, PSD and DE, which are based on the single-
channel analysis; the other is using the connectivity indices
directly as features, i.e. correlation and coherence. The mean
accuracy (%) and the standard deviation (%) for the PSD,
DE, correlation, and coherence features are 64.09 ± 15.24,
83.26 ± 9.08 [9], 76.60 ± 9.80, and 77.14 ± 9.69, respec-
tively. These results indicate that the topological features
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Fig. 3. The confusion matrices for the strength feature with two connec-
tivity indices: (a) correlation and (b) coherence. Here, each row and each
column represent the target class and the predicted class, respectively, and
each element denotes the classification accuracy in percentage (%).
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Fig. 4. The classification performance of different frequency bands using
the strength feature with two different connectivity indices. Here, Total refers
to the direct concatenation of the five frequency bands.

can achieve considerably better performance than that of the
conventional PSD feature, and the best topological feature,
the strength, is comparable to the state-of-the-art DE feature
in terms of classification accuracy. Except for the eigenvec-
tor centrality with coherence connectivity, other topological
features are also better than the correlation and coherence
features, which implies the superiority of exploiting the
topological properties of the brain network.

Table II presents the mean classification accuracy (%) and
the standard deviation (%) of the four fusion strategies for
combining the DE and strength features with two connec-
tivity indices. The best classification accuracy of 87.04% is
achieved by the decision-level fusion strategy with correla-
tion connectivity, which improves 3.78% in comparison with
the state-of-the-art DE feature on the same dataset [9].

TABLE II
THE CLASSIFICATION PERFORMANCE OF THE DE AND STRENGTH

FEATURES WITH TWO DIFFERENT CONNECTIVITY INDICES

Fusion Strategies Correlation Coherence
FLF 84.31 ± 8.32 84.28 ± 8.22
Max 85.73 ± 8.40 86.22 ± 7.67
Sum 87.04 ± 7.41 86.33 ± 7.79

Fuzzy 86.65 ± 7.70 86.43 ± 8.14
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B. Functional Brain Connectivity Patterns
As aforementioned that only the training datasets were

exploited in critical subnetwork selection and 5-fold cross
validation manner was adopted in performance evaluation,
we selected the critical subnetworks for five times in this
paper. The results indicate that the critical subnetworks
exhibit consistency during these five times of selection.

Fig. 5. The functional brain connectivity patterns for the three emotions in
the five frequency bands with coherence as the connectivity index. In each
subfigure, the nodes in the left and right represent EEG channels located
in the left and right cortical regions, respectively; the nodes from top to
bottom represent EEG channels located from the frontal, temporal, parietal
to the occipital lobes. It should be noted that the intersections of the critical
connections among these three emotions are not displayed in this figure.

The averaged critical subnetworks over five folds are
depicted in Fig. 5, where 15 subfigures correspond to the
functional connectivity patterns associated with the three
emotions in the five frequency bands. Fig. 5 reveals that the
sad and neutral emotions share relatively similar connectivity
patterns in comparison with the happy emotion, which may
account for the results depicted in Fig. 3. For the happy
emotion, the coherence connectivity is significantly higher at
frontal site in the alpha, beta, and gamma bands. In accor-
dance with the previous findings that the neural patterns have
significantly higher delta responses at parietal and occipital
sites for the sad emotion [9], Fig. 5 shows significantly

higher coherence connectivity at these sites in the delta
band for the sad emotion. Whereas for the neutral emotion,
significantly higher coherence connectivity is found at frontal
site in the delta band. These results verify the conclusion
accomplished by fMRI that the brain areas contributing to
emotion processing predominate in the frontal and parietal
structures [11]. Additionally, the coherence connectivity is
significantly higher at temporal site in the alpha band for
the sad emotion compared to the happy emotion, which is
consistent with the existing work [7].

V. CONCLUSIONS

In this paper, we have proposed a critical subnetwork
selection approach to identifying the functional connectivity
patterns associated with three emotions (happy, neutral, and
sad). The results have indicated that the emotion associated
connectivity patterns do exist, where significantly higher
coherence connectivity can be found in the alpha, beta, and
gamma bands at frontal site for the happy emotion, in the
delta band at frontal site for the neutral emotion, and in the
delta band at parietal and occipital sites for the sad emotion.
Furthermore, the topological features are considerably better
than the conventional PSD feature, and the decision-level
fusion strategy for the best topological feature (strength) and
the state-of-the-art DE feature achieves the best classification
accuracy of 87.04%, which is 3.78% higher than that of the
DE feature on the same emotion EEG dataset.
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