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Abstract—This study aims at measuring last-night sleep quality
from electroencephalography (EEG). We design a sleep ex-
periment to collect waking EEG signals from eight subjects
under three different sleep conditions: 8 hours sleep, 6 hours
sleep, and 4 hours sleep. We utilize three machine learning
approaches, k-Nearest Neighbor (kNN), support vector machine
(SVM), and discriminative graph regularized extreme learning
machine (GELM), to classify extracted EEG features of power
spectral density (PSD). The accuracies of these three classi-
fiers without feature selection are 36.68%, 48.28%, 62.16%,
respectively. By using minimal-redundancy-maximal-relevance
(MRMR) algorithm and the brain topography, the classification
accuracy of GELM with 9 features is improved largely and
increased to 83.57% in average. To investigate critical frequency
bands for measuring sleep quality, we examine the features of
each band and observe their energy changing. The experimental
results indicate that Gamma band is more relevant to measuring
sleep quality.

I. INTRODUCTION

Sleep is of great importance to humans. Enough sleep is not
only the basis of health and energy, but also the guarantee of
productivity. An objective and reliable measurement of sleep
quality is one of the most valuable research topics in the field
of transportation, medicine, health care, neuroscience, and
food industry. The sleep quality is especially important to the
railway driver because it affects drivers’ attention, judgment
and execution. Nowadays, pressures and sleep disorders are
prevalent among the drivers, which becomes a potential threat
to safe driving. In order to measure the sleep quality of
drivers in advance and get rid of “risky” drivers, the railway
company is seeking an objective and reliable measurement of
sleep quality. With quick development of wearable EEG signal
acquiring devices, EEG-based sleep quality measurement is
considered as a feasible choice. The current sleep quality
measuring approaches could be divided into two categories:
subjective sleep quality measurement and objective sleep qual-
ity measurement [1].

The subjective sleep quality measuring method is to judge
the sleep quality by self-evaluation via sleep diaries, question-
naires, interviews, and indexes. The popular subjective sleep
quality measuring methods include Pittsburgh Sleep Quality
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Index [2], Epworth Sleep Scale [3], and Sleep Diaries [4].
However, we have no way of knowing whether the respondents
are honest, conscientious, responsible for self assessment and
related records and in many cases they may provide false
information or fill in the questionnaire not seriously. Secondly,
the subjective evaluation method is more troublesome, time-
consuming and laborious, which requires participants to se-
riously think about, a detailed answer, record relevant infor-
mation in time, in the meantime, experiment personnel also
need a manual investigation and analysis of the information
in order to give a sleep quality evaluation and judgment of
the subject. Finally, the subjective evaluation method requires
subjects have a certain cultural level, enough introspection and
self-discipline. Many participants may not clearly understand
the subjective evaluation method on the provided requirements
and problems or they can’t do accurate understanding and
judgment on their own, thus failing to actively provide accurate
and reliable information. Hence, as described above, subjective
sleep quality measurements do not meet our needs.

The objective sleep quality measuring method is to judge
the sleep quality based on physiological signals. The conven-
tional objective sleep quality measuring approaches include
polysomnography [5] and actigraphy. For this kind of method,
subjects need to wear equipment like a band during the sleep.
The limitation of this method is that users should wear the
equipment for a long time, so this approach can not meet the
requirements of us to quickly check the quality of sleeping
of high-speed rail drivers. Therefore, we hope to develop a
fast and easy method. Since recent research shows that EEG
signals can reflect the fatigue state accurately [6][7] , we focus
on EEG-based sleep quality measuring in this paper.

So far no common acknowledgements about the precise
definition of the sleep quality have been acquired by the
researchers over the world, because it is a rather vague and
subjective notion in itself. Besides, for different individuals,
there are different standards, since sleep quality is both corre-
lated to the objective factors such as the total sleep time, sleep
onset latency, sleep disruptive events, and sleep efficiency [1],
and to the subjective factors including the mood, stress and
anxiety. Moreover, different people may set different standards
for the sleep quality. Even if the sleep time is long enough and



the sleep environment is satisfactorily quiet and comfortable,
some people could still feel dissatisfied with their sleep quality,
while others may find themselves full of energy even if their
sleep time is not thought to be long enough. Some people
may evaluate their sleep quality based on the current waking
state, whereas other may do it according to their sleep process.
How people evaluate their sleep quality may be also affected
by their mood and the surroundings.

The length of sleep is directly related to the sleep quality
for the majority of the normal people. In most cases, lack
of adequate sleep time leads to poorer sleep quality, while
sufficient sleep time may ensure a good sleep. Therefore, in
this study, we take the total sleep time as the substitute to
measure the sleep quality. Based on the researches and surveys
conducted by the experts in National Sleep Foundation (NSF),
generally speaking, 8-hour sleep presents a high sleep quality,
particularly for young adults. That means whether the sleep
time is more or less than 8 hours results in the reduction of
the sleep quality. And the sleep time no more than 4 hours
or no less than 12 hours means an awful sleep in terms of its
quality [8]. Based on the findings of NSF, we hypothesize in
this study that a sleep of about 8 hours means a favorable sleep
quality; a sleep of 6 hours corresponds to the a normal sleep
quality; a sleep of 4 hours represents a poor sleep quality.

To investigate the underlying mechanisms of sleep quality,
sleep deprivation experiment is the common method. Sleep
deprivation means not having enough sleep. It can be chronic
sleep deprivation or acute sleep deprivation. It can also be total
sleep deprivation and partial sleep deprivation. Here, we adopt
the acute partial sleep deprivation experiment.

II. RELATED WORK

Li et al. [9] tried to study the influence of lack of sleep on
the event-related potentials of the event under the stimulation.
In both cases of sufficient sleeping and lack of sleep, audio
stimulation was given to subjects, and then the parallel factor
analysis method was used to analyze the event-related poten-
tials of the subjects in both cases. They found that compared
with the sufficient sleeping, event-related potentials activities
of the subjects are near to the forehead, and Gamma frequency
band had delay and attenuation in the case of lack of sleep.

Jin et al. [10] observed the influence of lack of sleep on
the connection between the brain regions. After the functional
cluster analysis was conducted on the electroencephalogram
(EEG) in both cases of sufficient sleeping and lack of sleep
by the subjects, they found the functional cluster of subjects
was changed in the case of lack of sleep.

Na et al. [11] attempt to investigate the influence of lack of
sleep on the connection between cerebral hemisphere. After
the mutual information analysis was conducted on EEG in
both cases of sufficient sleeping and lack of sleep, they found
the connection between the hemispheres was weakened in the
case of lack of sleep.

Sánchez et al. [12] discussed whether the influence of lack
of sleep of the same period on EEG of women was the same
as the influence on EEG of men, and they found that compared

with men, the influence of lack of sleep of the same period
on women was more peaceful, but women needed more sleep
to recover from lack of sleep.

Tassi et al. [13] tried to observe the influence of lack of
sleep on EEG, and they found that compared with the case
of sufficient sleeping, Theta wave of subjects in the EEG
increased in the case of lack of sleep.

Lorenzo et al. [14] investigated the influence of lack of
sleep on the EEG of men, and they found that compared
with sufficient sleeping, Theta wave of EEG of male subjects
increased, the Alpha wave decreased, and the Beta wave in
the central brain regions increased.

Jeong et al. [15] studied the influence of lack of sleep on the
dimension complexity of EEG, and they found that compared
with sufficient sleeping, the dimension complexity of EEG of
the subjects was reduced in the case of lack of sleep. They
speculated that the information processing function of brain
decreases under the condition of lack of sleep.

As described above, the existing work analyzed the differ-
ences and changes in some aspects of the treated EEG mainly
based on the two different sleep qualities: sufficient sleep and
lack of sleep. However, there is no research on the feasibility of
sleep quality classification with machine learning approaches.
On the contrary, we analyze the differences of EEG based on
three kinds of sleep qualities: good sleep, normal sleep and
poor sleep in this paper, and study sleep quality measuring
method using machine learning approaches.

III. METHODS

A. Frequency Bands and Sleep Cycle

EEG signals can be divided into five different frequency
bands: Delta, Theta, Alpha, Beta and Gamma band.

(1) Delta band (frequency 1-4Hz): When adults are in deep
sleep, the delta wave will appear.

(2) Theta band (frequency 4-8Hz): When adults are sleepy
and drowsy, the theta wave will appear. The slow wave
including the delta wave and the theta wave is associated with
the inhibited state of brain.

(3) Alpha band (frequency 8-13Hz): When adults are awake
and calm or close their eyes, the alpha wave will appear. It is
associated with the calm state of brain.

(4) Beta band (frequency 13-30Hz): When adults are fo-
cused, nervous, alert, or anxious, the beta wave will appear. It
is associated with the excited state of brain.

(5) Gamma band (frequency 30-50Hz): When adults are
executing complicated tasks which need parallel processing,
the gamma wave will appear. It is supposed to be linked with
the cognitive function [16].

Sleep is a naturally recurring state of mind. Its character-
istics are lowered reaction to external stimuli and temporary
consciousness loss. Sleep is controlled by the internal circadian
clock. There is a sleep cycle in humans’ sleep, which lasts
about ninety minutes. Most people will experience four to
six sleep cycles in one night’s sleep. The sleep cycle can be
divided into rapid eye movement (REM) stage and non-rapid
eye movement (NREM) stage. The non-rapid eye movement



stage can be further divided into three stages: N1, N2, and N3
[17].

(1) NREM stage 1: This stage consists of 5% to 10% of the
total sleep time. In this stage, humans are in the transition
between awake and asleep. The EEG changes from alpha
wave (8-13Hz) into theta wave (4-7Hz). This stage may be
associated with sudden twitches and hypnic jerks.

(2) NREM stage 2: This stage consists of 45% to 55% of
the total sleep time. In this stage, humans are already asleep.
The theta wave is prevalent in the EEG and sleep spindles as
well as K-complexes can be observed.

(3) NREM stage 3: This stage consists of 15% to 25% of
the total sleep time. In this stage, humans are in deep sleep.
The delta wave is prevalent in the EEG. It is the most restful
stage of the sleep. Parasomnias such as night terrors and sleep
walking might occur.

(4) REM stage: This stage consists of 20% to 25% of the
total sleep time. The physiological signals such as EEG are
quite similar to that of a waking state. However, sleeper in
this stage is harder to be aroused than at any other stage.
The sleeper will experience vivid dreams, which helps to
synthesize memory segments. This stage is associated with
the study ability.

B. Preprocessing

First of all, the raw EEG are preprocessed in the following
manner:

1) Down-sampling: The original sampling frequency of
EEG is 1000Hz, and the amount of data is too big to deal
with. Therefore, down-sampling is adopted, and the original
EEG frequency is reduced to 200Hz, which facilitates the
subsequent processing.

2) Dealing with the bad EEG electrodes: During the ex-
periments, there exist several bad electrodes occasionally, and
the corresponding EEG signals cannot be collected correctly.
However, if the data of bad electrodes are simply removed,
the follow-up data processing will be inconsistent. Therefore,
a neighbor interpolation method is adopted to process failure
EEG electrodes, replacing the error noise signal of bad EEG
electrodes with the average of the neighbor EEG electrodes.

3) Removing EEG artifact: In this work, a 1-50 Hz band-
pass filter [18] is adopted to filter out noise. In the experimen-
tal design of this study, subjects are required to sit quietly with
eyes closed during the whole course to avoid the appearance
of EOG and EMG to a large extent.

C. Feature extraction

After the preprocessing of EEG signals, the features of EEG
are extracted. The most commonly used feature is PSD, which
essentially reflects the energy change of EEG. Taking the five
different frequency bands of EEG into account, the effect of
sleep quality on EEG may be mainly reflected in one or several
frequency bands. After the short-time Fourier transform, PSD,
the commonly used EEG feature in five frequency bands was
extracted. Because the total number of EEG electrodes is 62,

there are 310 PSD features in all, which are concatenated
together to form a 310-dimensional feature vector.

In this paper, Hanning window-based discrete short-time
Fourier transform (STFT) algorithm is adopted to extract the
PSD, a time-frequency feature of EEG. The PSD feature
represents the signal power within the unit frequency band.

Suppose the EEG sequence recorded by an electrode is
x[n]={ x1,x2,...xn }, then the short-time Fourier transform of
the EEG sequence is:

STFT{x[n]}(m,ωk) ≡ X (m,ωk) =
N∑

n=1

x[n]w[n−m]e−jωkn

where ωk = 2πk
N represents the angular frequency, and k =

0, 1, ...N−1. w[n] represents a window function. The window
function used in this study is Hanning window as follows:

w(n) =

{
0.5

[
1− cos

(
2πn
M−1

)]
1 ≤ n < M

0 o.w.

When the EEG is divided into different EEG frequency
bands (Delta: 1∼3Hz; Theta: 4∼7Hz; Alpha: 8∼13Hz; Beta:
14∼30Hz; Gamma: 31∼50Hz), the Fourier transform of each
band is calculated, and then the energy spectrum of each band
is calculated by:

E (ωk) = X (m,ωk)X
∗ (m,ωk)

where, X∗ (m,ωk) is a conjugate function of X (m,ωk).
Then, PSD is defined as:

PSD(wk) =
1

N
E(wk), k = 0, 1...N − 1

D. Feature smoothing

The extracted PSD features have a more severe jitter.
Although the effect of sleep quality on EEG is intuitively
regarded to be stable and continuous, it is necessary to smooth
the EEG features with severe jitter.

Previous researches have found that, the feature smoothing
methods, such as moving average (MA) and linear dynamical
system (LDS) [19], help to improve the performance of
classifiers during emotion classification, and the LDS method
performs more stable than the MA method [20][21] . There-
fore, we apply the LDS method to smooth EEG features,
making attempt to remove noises effectively and get more
reliable data.

E. Classification

After obtaining the processed features of EEG, the next step
is to analyze the influence of sleep quality on the features. Our
strategy is to study whether we can train a classifier which
can accurately distinguish different sleep qualities with EEG
features. We utilize three approaches of machine learning:
k-Nearest Neighbor (kNN), support vector machine (SVM),
discriminative graph regularized extreme learning machine
(GELM) [22]. The parameter k in kNN is set to be 1, the kernel
function of SVM is linear kernel. For each subject, we choose
900 samples (300 for good sleep quality, 300 for medium sleep



quality, 300 for poor sleep quality) as the testing data, the 6300
samples from the other 7 subjects as the training data, where
the number of features of PSD are 310 dimensional, containing
all the combinations of 62 different electrodes and 5 frequency
bands.

F. Feature selection

There are actually 310 features for one sample on total
five bands. However, our training set only has 6300 samples
for training, which implies that the 310 dimensions are too
high for us. Therefore, we evaluate and compare five fea-
ture selection methods: Joint Mutual Information (JMI) [23],
Conditional Infomax Feature Extraction (CIFE) [24], Mutual
Information Features Selecting (MIFS) [25], Mutual Infor-
mation Maximisation (MIM) [26], and Minimal-redundancy
Maximal-relevance (MRMR) [27]. They are used to select
effective features, reduce the feature dimension, and enhance
the recognition accuracy.

IV. EXPERIMENTS

A. Purpose

The purpose of our experiment is to collect waking EEG
under different conditions of sleep quality and then analyze
the data to find the influences that sleep quality leaves on the
EEG. The differences among EEG under different conditions
can be used to train models to realize the EEG-based sleep
quality measurement. The experiment consists of two parts:
sleep deprivation experiment and EEG collection experiment.
The subjects are required to take part in both experiments three
times.

B. Subjects

Eight subjects, six of which are male and two are female,
participate in the experiment. They are all at the age of 21 to
23. They had a regular sleep and stayed in good health before
the experiment. None of them have any history of mental
disease or drug use. Besides, they didn’t have any contact
with hypnotic, caffeine or alcohol at the previous week before
they come to the experiment. Anything that contains what will
affect sleep was prohibited.

C. Sleep deprivation experiment

In the sleep deprivation experiment, subjects were required
to sleep at home at night for four, six, and eight hours,
respectively, and then they participated in the EEG collection
experiment in the following days.

D. EEG collection experiment

The EEG collection experiment took thirty minutes. Dur-
ing the whole process of EEG collection, the subjects were
required to keep their eyes closed and stay awake. While
subjects were also required to sit still on the chair, EEG signals
were recorded with ESI NeuroScan System at a sampling rate
of 1000 Hz from 62-channel electrode cap according to the
international 10-20 system, simultaneously. The experimenter
watched the EEG and subjects from outside the laboratory.

Fig. 1. The actual scene of our experiment.

There was no stimuli, no task and no interruption during the
experiment. Fig. 1 shows the actual scene of the experiment.

V. RESULTS AND DISCUSSIONS

A. Classification

We chose 900 samples of one subject as testing data, and
6300 samples from the other 7 subjects as training data. The
accuracies of three classifiers with 310 dimensions of PSD
features are shown in Table I .

From the results in Table I, we can see that, for total 310
features on all bands, the classification accuracy of GELM is
62.16% in average, which is much higher than those of kNN
and SVM. We also compare the average accuracies of each
frequency bands. Table II represents the experimental results.
From Table II, we find that all the results of GELMs are higher
than those of SVMs and kNN.

One of the primary problems is whether there exist some key
frequency bands for the EEG-based sleep quality evaluation.
These frequency bands contain key discriminative information
for different sleep quality. The variance of sleep quality has a
significant influence on these frequency bands. In terms of this,
we are able to obtain a higher classification accuracy with the
EEG features from these key frequency bands. We extracted
62-dimension PSD features from EEG on Delta, Theta, Alpha,
Beta and Gamma frequency bands, and compared them with
the 310-dimension features of total frequency band. The results
of the classification are shown in Table II.

The average recognition accuracy of Gamma frequency
band is higher than all other frequency bands, which shows
that the Gamma frequency band is associated with the quality
of sleep much more closely. In contrast, the Theta and Delta
frequency band perform poorly. The average recognition ac-
curacy of the Gamma frequency band reaches 66.70%, which
is higher than the accuracy of all the other frequency bands.
These results indicate that there exist critical frequency bands
for the EEG-based sleep quality evaluation, and the features
of these key frequency bands can effectively improve the
classification performance.



TABLE I
CLASSIFICATION ACCURACIES(%) OF KNN ,SVM AND GELM CLASSIFIERS USING 310 TOTAL FEATURES TO TRAIN AND TEST

Algorithms Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Average(±sd)

kNN 37.00 43.00 34.67 65.11 39.56 4.11 16.78 53.22 36.68±19.24
SVM 44.22 61.56 50.89 81.44 42.11 35.22 33.00 37.78 48.28±16.26

GELM 44.56 61.11 56.44 89.44 54.33 83.00 47.67 60.78 62.16±16.01

TABLE II
CLASSIFICATION ACCURACIES(%) OF DIFFERENT FREQUENCY BANDS USING SVM AND GELM

Frequency Band Algorithm Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Average(±sd)

Delta
SVM 36.00 33.00 33.33 48.56 49.56 61.78 65.00 38.22 45.68±12.64

GELM 51.89 44.78 67.78 71.11 62.56 61.67 58.44 63.11 60.17±8.48

Theta
SVM 28.22 47.44 33.33 64.56 32.89 54.44 37.78 25.22 40.49±13.74

GELM 53.56 18.00 38.44 42.44 52.11 50.33 59.11 56.67 46.33±13.37

Alpha
SVM 39.33 62.33 57.67 51.89 66.67 45.00 37.67 38.11 49.83±11.49

GELM 72.22 64.89 55.89 50.89 68.00 73.44 44.44 49.89 59.96±11.10

Beta
SVM 64.56 66.33 38.67 64.44 64.22 44.56 33.67 46.56 52.88±13.42

GELM 62.67 66.67 47.56 66.22 61.33 70.56 55.11 69.89 62.50±7.84

Gamma
SVM 62.00 63.78 33.33 66.67 66.11 69.11 33.33 58.00 56.54 ±14.70

GELM 65.11 62.22 55.67 66.67 72.78 100.00 39.89 71.22 66.70±17.02

Total
SVM 44.22 61.56 50.89 81.44 42.11 35.22 33.00 37.78 48.28±16.26

GELM 44.56 61.11 56.44 89.44 54.33 83.00 47.67 60.78 62.16±16.01

We further present the percentage of frequency band energy
accounting for the total power of all frequency bands. The
experimental the results are shown in Table III. The absolute
power of Alpha frequency band and the proportion of Alpha
frequency band accounting for the total power of all frequency
bands are higher than those of the other frequency bands, it
is because we recorded EEG data under the conditions that
participants closed their eyes, sit quietly and stayed awake
without any external stimuli and interference. When people
keep themselves aware, quiet or eyes-closed, Alpha wave
will be dominant, and its amplitude appears from small to
large. It is generally believed that Alpha wave is the main
performance of the electrical activity when the cerebral cortex
is in awake and quite states. Moreover, with the increase of
sleep quality, the energy change of Gamma frequency band
tends to be the most obvious changing, and the percentage of
Gamma frequency band accounting for the total power of all
frequency bands is increasing. These results indicate that the
Gamma frequency band contains the most relevant information
for sleep quality evaluation among different frequency bands,
which is consistent with the previous experimental results of
classification accuracies.

B. Feature selection

The number of dimensions of PSD features is 310 from the
total five frequency bands, which may contain some redundant
information, since there exist some critical frequency bands
for EEG-based sleep quality evaluation. Therefore, we adopt
different feature selection methods to extract the optimal
subset of features. Fig. 2 depicts the performance of five
different feature selection methods to select 10 and 20 features.
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Fig. 2. Performance comparison of five different feature selection algorithms.

TABLE III
ENERGY CHANGE(%) OF EACH FREQUENCY BAND ACCOUNTING FOR THE
TOTAL ENERGY OF ALL FREQUENCY BANDS UNDER THE DIFFERENT SLEEP

QUALITY

Sleep Hours Delta Theta Alpha Beta Gamma
4 14.6 20.6 40.1 18.3 6.4
6 10.8 18.8 39.1 21.7 9.6
8 10.6 19.1 35.2 22.9 12.3

From the results, we can find that the minimal-redundancy-
maximal-relevance (MRMR) algorithm achieves the highest



TABLE IV
CLASSIFICATION ACCURACIES(%) OF DIFFERENT FEATURES SELECTED BY MRMR AND USING KNN, SVM AND GELM

Feature dimension Algorithm Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Average(±sd)

6
kNN 66.11 46.22 44.56 31.56 77.22 49.00 45.65 48.78 51.13±14.11
SVM 67.56 68.44 64.44 68.67 92.56 91.11 54.22 57.00 70.50±14.20

GELM 87.89 62.22 64.78 67.89 72.00 97.78 58.67 60.11 71.41±14.13

8
kNN 60.22 48.44 68.67 33.56 96.89 55.89 53.78 65.22 60.33±18.32
SVM 63.89 71.22 90.11 73.56 70.11 91.22 62.22 58.22 72.57±12.26

GELM 94.11 75.33 74.89 53.56 87.22 85.78 58.89 59.11 73.61±15.06

10
kNN 42.22 68.67 67.67 41.33 85.56 60.56 50.11 63.89 60.00±14.95
SVM 40.00 69.44 91.78 76.89 73.78 82.78 61.00 61.33 69.63±15.83

GELM 50.33 71.22 88.44 68.89 97.56 92.44 56.67 58.56 73.01±17.84

12
kNN 49.78 67.67 67.56 35.11 71.78 83.11 51.11 69.22 61.92±15.34
SVM 52.00 72.88 91.56 74.78 73.00 97.00 67.11 66.00 74.29±14.31

GELM 60.44 70.89 96.89 68.89 80.56 98.22 60.67 70.78 75.91±14.79

14
kNN 51.44 69.67 75.22 28.33 53.22 67.89 37.44 71.56 56.85±17.21
SVM 43.11 72.00 65.11 76.11 64.44 99.67 49.44 61.22 66.39±17.29

GELM 52.11 69.67 85.78 68.67 61.11 100.00 49.78 65.44 69.07±16.79

16
kNN 43.33 81.89 75.33 29.44 53.78 69.56 42.11 72.67 58.51±18.97
SVM 44.22 68.44 66.44 78.33 61.67 95.22 49.78 59.89 65.50±16.05

GELM 53.22 77.00 79.44 76.11 56.67 95.11 51.00 60.67 68.65±15.58

18
kNN 43.00 79.00 67.22 26.11 55.00 61.00 39.33 67.11 54.72±17.45
SVM 45.56 61.78 60.22 77.56 57.33 95.11 51.33 55.11 63.00±15.98

GELM 51.00 64.89 84.56 68.00 55.67 97.33 47.44 53.44 65.29±17.57

20
kNN 43.33 71.33 60.44 31.78 63.89 57.33 36.44 66.22 53.84±14.71
SVM 46.44 57.67 66.33 80.78 58.89 82.44 49.22 48.78 61.32±14.11

GELM 51.33 66.22 81.44 69.11 62.44 78.33 49.67 86.56 68.14±13.53

TABLE V
CLASSIFICATION ACCURACIES(%) OF 9 FEATURES SELECTED BY MRMR AND BRAIN TOPOGRAPHY AND CLASSIFIED BY SVM AND GELM

Algorithm Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Average(±sd)

SVM 63.44 96.89 71.56 89.44 84.78 97.78 63.33 78.11 80.67±13.82
GELM 67.56 88.67 65.00 91.89 98.00 95.33 67.89 94.22 83.57±14.15
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Fig. 3. The accuracies of KNN, SVM and GELM with different features
selected by MRMR algorithm.

Beta Gamma

Fig. 4. The change of average energy distribution in Beta and Gamma bands.

accuracy. These results indicate that MRMR can achieve the
best performance among those five methods for EEG-based
sleep quality evaluation.

We further investigate how the performance varies with the
numbers of feature dimensions from 6 to 20 using MRMR
algorithm. The experimental results are depicted in Fig. 3.
The details are shown in Table IV. From Fig. 3 and Table
IV, we can see that GELM is more suitable for sleep quality



Fig. 5. Nine electrodes selected by MRMR and brain topographic map energy
analysis.

measuring than the others and the best dimension of EEG
features is twelve for all the three machine learning methods.
The 12 features are the electrodes: F8 in Alpha band; C6, F5,
F8 and PO3 in Beta band; C3 and PO6 in Gamma band; F1,
F6 and FC1 in delta band; FCZ and C3 in theta band.

Moreover, the changes of the average energy distribution
show the key electrodes: when the energy changes significantly
under different conditions, the electrodes distinguish different
sleep quality more effectively. We calculate the difference
of average energy distribution in each frequency band for
every electrode under 4 hours-sleep and 6 hours-sleep, and
multiply it by the difference of 6 hours-sleep and 8 hours-
sleep. This inner product can be seen as the energy changes
approximatively. By plotting the brain topography with the
inner product (Fig. 4), we find that the electrode PZ in Beta
band and the electrode FCZ in Gamma band show remarkable
changes with different sleep time. Based on the above 12
features selected by MRMR, we further try to enhance the
performance by adding high energy-changed electrodes and
removing low energy-changed electrodes. The final 9 features
(Fig. 5) are the electrodes: PZ, C6, and PO3 in Beta band;
C3, PO6, FCZ, and FPZ in Gamma band; F1 in delta band;
and FCZ in theta band. Table V shows that GELM achieves
the accuracy of 83.57% in average.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have designed a sleep experiment, and
have collected EEG of eight subjects under the conditions
of good, normal and poor sleep qualities, respectively. We
have compared the performance of three machine learning
algorithms (kNN, SVM and GELM) for classification of sleep
quality, and found that GELM is superior to others. From
the experimental results, we have found that Gamma band is
the key frequency band for sleep quality evaluation. We have
compared five feature selection algorithms. The experimental
results indicate that MRMR is the most suitable algorithm
and its recognition rate reaches 83.57% through the brain
topographic map energy analysis.

As future work, we will carry our further study on this
research from the following three aspects: 1) to design more

complex types of experiments with tasks; 2) to investigate
whether there is a gender difference on the influence of sleep
quality on EEG; 3) to examine whether there exists stable EEG
patterns over time for sleep quality measuring.
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[16] K. Mann, P. Bäcker, and J. Röschke, “Dynamical properties of the
sleep EEG in different frequency bands,” International Journal of
Neuroscience, vol. 73, no. 3-4, pp. 161–169, 1993.

[17] Y. Niiyama, R. Fujiwara, N. Satoh, and Y. Hishikawa, “Endogenous
components of event-related potential appearing during nrem stage 1 and
rem sleep in man,” International Journal of Psychophysiology, vol. 17,
no. 2, pp. 165–174, 1994.



[18] M. J. T. Smith and R. M. Mersereau, “Introduction to digital signal
processing: A computer laboratory textbook,” p. 120, 1991.

[19] L.-C. Shi and B.-L. Lu, “Off-line and on-line vigilance estimation based
on linear dynamical system and manifold learning,” in 32nd Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE, 2010, pp. 6587–6590.

[20] X.-W. Wang, D. Nie, and B.-L. Lu, “Emotional state classification from
EEG data using machine learning approach,” Neurocomputing, vol. 129,
pp. 94–106, 2014.

[21] R.-N. Duan, J.-Y. Zhu, and B.-L. Lu, “Differential entropy fea-
ture for EEG-based emotion classification,” in 2013 6th International
IEEE/EMBS Conference on Neural Engineering. IEEE, 2013, pp. 81–
84.

[22] Y. Peng, S. Wang, X. Long, and B.-L. Lu, “Discriminative graph regular-
ized extreme learning machine and its application to face recognition,”
Neurocomputing, vol. 149, pp. 340–353, 2015.

[23] H. Yang and J. Moody, “Feature selection based on joint mutual infor-
mation,” in Proceedings of International ICSC Symposium on Advances
in Intelligent Data Analysis. Citeseer, 1999, pp. 22–25.

[24] D. Lin and X. Tang, “Conditional infomax learning: an integrated
framework for feature extraction and fusion,” in ECCV 2006. Springer,
2006, pp. 68–82.

[25] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Transactions on Neural Networks, vol. 5,
no. 4, pp. 537–550, 1994.

[26] D. D. Lewis, “Feature selection and feature extraction for text categoriza-
tion,” in Proceedings of the Workshop on Speech and Natural Language.
Association for Computational Linguistics, 1992, pp. 212–217.

[27] H. Peng, F. Long, and C. Ding, “Feature selection based on mutu-
al information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.


