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Abstract— EEG signals, which can record the electrical
activity along the scalp, provide researchers a reliable channel
for investigating human emotional states. In this paper, a
new algorithm, manifold regularized extreme learning machine
(MRELM), is proposed for recognizing human emotional states
(positive, neutral and negative) from EEG data, which were
previously evoked by watching different types of movie clips.
The MRELM can simultaneously consider the geometrical
structure and discriminative information in EEG data. Using
differential entropy features across whole five frequency bands,
the average accuracy of MRELM is 81.01%, which is better
than those obtained by GELM (80.25%) and SVM (76.62%).
The accuracies obtained from high frequency band features
(β, γ) are obviously superior to those of low frequency band
features, which shows β and γ bands are more relevant to emo-
tional states transition. Moreover, experiments are conducted
to further evaluate the efficacy of MRELM, where the training
and test sets are from different sessions. The results demonstrate
that the proposed MRELM is a competitive model for EEG-
based emotion recognition.

I. INTRODUCTION

Emotion is an overall performance of human’s conscious-
ness, which can significantly affect human’s action towards
peripheral environment and thus it always plays an im-
portant role in our daily lives especially in human-human
interaction. It is relatively easier for people to recognize
others’ emotional states. However, how to detect and model
users’ emotional states with advanced artificial intelligence
techniques is a challenging topic within the human-machine
interaction community [1]. Recently, many researchers from
neuroscience, psychology, neural engineering and computer
science fields have been focusing on emotion recognition
based on machine learning techniques [2], [4].

Both physiological and non-physiological signals can be
used for emotion recognition. The former signals includ-
ing electroencephalography (EEG), electromyogram (EMG),
electrocardiogram (ECG) and respiration signals are consid-
ered to be more effective and reliable because human cannot
control them intentionally. Among them, EEG-based emotion
recognition has received increasing attention recently. Li and
Lu showed that γ band EEG signals are more suitable to
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classify happiness and sadness with high time resolution [3].
Wang et al. used ISOMAP to estimate the emotional states
and the obtained trajectory is consistent with the transition
of emotional states [4]. Deep Belief Networks (DBN), one
of the most popular deep learning models, was employed to
classify two types of emotional states (positive and negative)
from EEG [5].

In this paper, we propose a new classifier, termed Man-
ifold Regularized Extreme Learning Machine (MRELM),
to perform emotion recognition based on the differential
entropy (DE) feature, which has been shown effective for
depicting the emotional information in EEG [6]. MRELM
can take both data geometrical structure and discrimina-
tive information into consideration. Extensive experimental
results show that MRELM outperforms GELM (an ELM
variant previously proposed in [7]) and SVM in EEG-based
emotion recognition.

II. EXPERIMENTS

A. Stimuli

In order to evoke emotions of subjects, we chose several
4-minute movie clips as stimuli. These movie clips could be
divided into three categories: positive, neutral and negative.
There were 15 clips in each session and 5 clips for each
emotional state. All the movies were in Chinese and easy
to understand. The stimuli were only made up of popular
movies which are After Shock, Lost in Thailand, Just Another
Pandora’s Box, World Heritage in China, Untitled Remem-
bering 1942 Project, and Flirting Scholar. We supposed that
the 4-minute movie clip could contain an vivid and relatively
complete story, so that subjects were able to maintain certain
typical emotional state during the 4 minutes.

B. Subjects

Three men and three women aged between 20 to 27
participated in the experiment for three times each, with
the interval of about one week. They were all right-handed
and had no history of mental illness. The experiments were
performed in the day time and subjects were asked to have
adequate sleep in the day before experiment. Before the
experiments, subjects did sign informed consent forms, and
that the experiment followed the Helsinki ethical guidelines.

C. Procedure

A 62-channel electrode cap according to the extended
international 10-20 and ESI NeuroScan System were used
to record EEG data with sampling rate 1000Hz. 15 movie
clips were played with a 10s rest and a 15s hint between



two clips. During the rest time, subjects were asked to fill a
form as feedback to show whether the emotional states were
successfully evoked. Figure 1 is the experimental procedure.
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Fig. 1. Procedure of stimuli playing.

III. METHODS

A. Feature Extraction and Preprocessing

Due to the effectiveness of DE in modeling emotion
information from EEG signals [6], we chose DE instead of
energy spectrum (ES) [8] as feature. The definition of DE is
as follows

h(X) = −
∫

X

f(x) log(f(x))dx,

where time series X ∼ N (µ, σ2), and the length of EEG
sequence is fixed. Thus, DE h(X) can be calculated by

∫ +∞

−∞

−
exp

(

− (x−µ)2

2σ2

)

√
2πσ2

log
exp

(

− (x−µ)2

2σ2

)

√
2πσ2

dx.

It can be easily found that the DE definition is equivalent to
the logarithm of ES and thus we have h(X) = log(2πeσ2)

2 .
We extracted features on the five common frequency bands of
EEG. They are δ(1-3Hz), θ(4-7Hz), α(8-13Hz), β(14-30Hz)
and γ(31-50Hz). Short-time Fourier transform (STFT) with
1s non-overlapping Hanning window was used to calculate
the average DE features of each channel on these bands.
Each frequency band signal has 62 channels and thus 310
dimensional features were obtained for each example. Since
the effective experimental time lasted for 57 minutes, we
finally got 3400 examples for each session.

Linear Dynamic System (LDS) [9] was used to remove
the rapid changes of EEG features and get more reliable
examples.

B. Classification

In this section we introduce the MRELM model formu-
lation. ELM was proposed for training single layer feed
forward neural networks (SLFNs) [10], which generates the
input weights and hidden layer bias randomly. Given training
samples {(xi, ti)}Ni=1, where xi = (xi1, · · · , xid)

T is the
input and ti = (ti1, · · · , tim)T is the target. Assuming L is
the number of hidden units, the ELM output function is

fL(x) =
∑L

i=1

βihi(x) = h(x)β, (1)

where β = [β1, β2, · · · , βL]
T is the output weight matrix

between the hidden layer and the output layer, and h(x) =
[h1(x), · · · , hL(x)] is the output (row) vector of the hidden
layer with respect to the input x. h(x) actually maps the data

from the d-dimensional input space to the L-dimensional
hidden layer feature space (ELM feature space) H.

ELM aims at minimizing the training error as
minβ ‖Hβ−T‖2, where H is the hidden layer representation

H =









h(x1)
h(x2)

...
h(xN )









=









h1(x1) h2(x1) · · · hL(x1)
h1(x2) h2(x2) · · · hL(x2)

...
...

...
...

h1(xN ) h2(xN ) · · · hL(xN )









.

The output weight matrix β can be estimated analytically as

β̂ = argminβ ||Hβ −T||22 = H
†
T. (2)

GELM [7], a variant of ELM, which has the following
objective

minβ ‖Hβ −T‖22 + λ1Tr((Hβ)TL(Hβ)) + λ2‖β‖
2

2, (3)

only considers the label consistency property of data and
enforces the output of samples in the same class to be similar.
However, many researches showed that learning performance
can be significantly enhanced if the geometrical structure of
data is exploited [11] and thus both geometrical structure
and discriminative information were proven effective in
discriminative tasks.

Therefore, MRELM emphasizes both above mentioned
aspects by defining the within-class graph Gw and between-
class graph Gb. The corresponding affinity matrices are

Ww
ij =

{

1, if xi ∈ Nk1(xj) or xj ∈ Nk1(xi)
xi and xj are from the same class

0, otherwise.

and

W b
ij =

{

1, if xi ∈ Nk2(xj) or xj ∈ Nk2(xi)
xi and xj are from different classes

0, otherwise.

The two graph Laplacian matrices Lw and Lb are defined as
Lw = D

w − W
w (Dw
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(Db
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of Lw and Lb, we need to minimize Tr((Hβ)TLw(Hβ))
(to retain the data geometric structure) and maximize
Tr((Hβ)TLb(Hβ)) (to enforce the discriminative informa-
tion) simultaneously. Therefore, the new graph Laplacian
Lnew is designed as (L

−1/2
b )TLwL

−1/2
b to cover both as-

pects together.
As a result, we formulate the objective of MRELM as

min
β

‖Hβ −T‖22 + λ1Tr((Hβ)TLnew(Hβ)) + λ2‖β‖
2

2, (4)

and its solution as

β∗ = (HT
H+ λ1H

T
LnewH+ λ2I)

−1
H

T
T.

IV. RESULTS AND DISCUSSIONS

We got about 3400 samples for each session and then
choose about 2000 samples as training set, the rest in the
same session as test set. In order to investigate the stability
of MRELM model, we also choose data from one session
as training set and the data from another session as test set.
Since we have collected three sessions data for each subject,
training sets and test sets could be from the same subject’s
different sessions, but also from different subjects.



A. Experimental Paradigm 1

For each subject, we use training sets and test sets from
the same session. Tables I and II show the results of linear-
SVM, GELM and MRELM classifiers using DE features on
δ, θ, α, β and γ frequency bands as input. Obviously, the
performance of MRELM is consistently better than those of
GELM and SVM in most cases. If using all frequency band
features, the average accuracy across all subjects of MRELM
is 81.01%, which is nearly 1% improvement w.r.t GELM
(80.25%) and 4.5% w.r.t. SVM (76.62%). Similar results can
be found on each frequency band. If comparing the results
of different bands, we can find that the accuracies based on
β and γ band signals are much higher than remaining bands.
This reflects that the transition of emotional states may have
closer connection to these two frequency bands.

Table III is the average confusion matrix of three classifiers
based on 310 DE features. From this table, we can see
that the positive and neutral states are much easier to be
recognized while the negative state is difficult to estimate.
The MRELM can obtain a 5%-7% accuracy improvement
when estimating the negative state w.r.t. GELM and SVM.

B. Experimental Paradigm 2

In this experiment, we use training sets and test sets from
different sessions. As shown in Tables IV and V, MRELM
still achieves the best average results. The accuracies whose
training and test sets are from different sessions is obvious
lower than those whose training and test sets are from the
same session. The average accuracy for all subjects in experi-
ment 1 is 81.01% while this value is 72.76% for experiment
2. Though there is much loss in accuracy, 72.76% is still
a relatively good result for three-class emotion recognition
problem which implies that the transition of EEG patterns
among different sessions are stable for the same subject.

For evaluating the models based on subject-independent
features and investigating the stability of common patterns
across subjects, we use D1 as training set and test the
data from different sessions of other subjects. The best
performance of test sets from subjects A, B, C, E and F
are A1(75.02%), B1(69.46%), C2(69.33%), E3(64.73%) and
F3(69.86%), respectively. It suggests that the transition of
EEG patterns still have strong underlying regularity. And this
regularity makes that learning models can be generally used
for EEG-based emotion recognition among different subjects.

Figure 2 shows the more obvious visualization of aver-
age performance obtained by three classifiers over different
setting of training and test sets.

V. CONCLUSIONS

In this paper, we worked on recognizing the emotional
states (positive, neutral and negative) using EEG data. A new
classifier, manifold regularized extreme learning machine
(MRELM), was proposed to classify the differential entropy
features. Experimental results demonstrated that MRELM is
an excellent classifier for EEG-based emotion recognition.
Morevoer, we had several observations: 1) the β and γ band
features are more related to the transition of emotional states;

TABLE I

EMOTION RECOGNITION ACCURACIES(%) OF SVM(M1), GELM(M2)

AND MRLEM(M3) FOR SIX SUBJECTS (A,B,C,D,E,F).

A
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 49.93 54.84 57.88 37.57 46.10 46.03 46.75 50.14 54.48
θ 60.26 61.20 62.21 49.35 49.78 55.85 58.31 54.26 55.28
α 65.17 70.01 71.89 54.41 55.35 57.51 48.13 54.26 55.28
β 84.10 85.19 85.19 65.46 66.18 68.71 57.15 66.26 68.93
γ 81.50 86.64 88.01 67.27 75.07 75.87 59.54 61.92 65.32

Total 82.59 84.39 85.26 75.65 70.09 72.40 59.90 63.95 65.39

B
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 53.47 58.09 62.14 38.73 51.30 54.41 52.02 54.55 59.25
θ 57.59 63.44 65.25 55.92 58.89 60.33 52.38 58.82 57.80
α 72.83 82.73 83.74 65.75 65.10 65.82 65.10 71.32 71.82
β 90.17 88.08 89.96 69.44 69.65 71.89 78.97 82.30 84.39
γ 89.52 90.90 91.19 70.66 69.22 69.73 77.24 77.75 79.55

Total 88.15 89.45 92.63 65.82 69.15 72.47 71.28 79.48 79.33

C
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 50.79 58.45 60.33 35.77 40.97 40.03 44.73 46.97 49.78
θ 69.44 67.05 69.29 49.57 50.58 51.88 43.93 40.75 42.41
α 61.13 61.34 66.11 50.43 52.89 54.55 49.21 45.07 46.60
β 77.24 79.19 78.25 90.03 90.75 92.34 58.60 54.62 59.61
γ 76.37 80.92 77.82 89.45 89.96 90.46 59.18 58.45 60.26

Total 76.52 82.37 83.53 91.11 92.99 93.14 61.20 67.85 60.48

D
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 75.87 78.61 79.62 60.33 58.96 61.92 58.09 62.72 64.81
θ 73.92 84.90 79.48 56.00 61.34 58.89 55.78 60.91 63.66
α 70.16 88.01 87.79 80.56 85.33 86.06 80.27 90.10 90.25
β 92.99 96.89 97.18 88.09 95.30 95.74 97.18 96.82 96.82
γ 90.68 96.60 96.89 91.98 96.89 97.25 96.32 95.74 96.32

Total 96.68 96.68 97.11 91.04 96.89 96.82 97.25 96.53 97.54

E
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 58.89 56.50 57.88 55.85 58.45 60.41 48.70 53.18 54.19
θ 66.47 65.17 63.87 40.25 43.61 47.62 40.10 43.71 45.59
α 46.89 58.02 61.06 34.39 51.30 51.95 60.69 63.58 67.56
β 67.12 74.64 76.37 53.90 74.35 75.07 63.08 73.77 75.65
γ 76.89 80.35 81.36 70.66 73.92 76.66 63.29 66.98 68.14

Total 70.01 73.19 75.94 60.19 73.19 75.43 73.99 74.57 71.10

F
Session 1 Session 2 Session 3

M1 M2 M3 M1 M2 M3 M1 M2 M3
δ 69.65 72.25 72.04 45.16 40.25 41.33 55.85 57.73 58.17
θ 58.24 59.47 60.79 46.82 49.21 50.29 63.44 64.38 64.31
α 60.48 64.74 67.05 53.11 57.08 57.87 66.84 69.15 69.94
β 73.19 80.20 81.72 59.25 57.88 59.32 88.29 91.18 93.43
γ 69.80 85.98 87.14 58.22 57.08 59.39 93.86 94.29 94.08

Total 73.19 84.32 85.55 56.50 59.25 62.28 87.50 90.10 91.76

“Total” means concatenating features from all five frequency bands.

TABLE II

AVERAGE PERFORMANCES OF SVM, GELM AND MRELM IN

EXPERIMENTAL PARADIGM 1 (MEAN±STD%).

Freq. Band
Mean±Std(%)

SVM GELM MRELM
δ 52.12±10.46 55.56± 9.60 57.48± 9.71
θ 55.43± 9.46 57.93±10.49 58.93± 9.01
α 60.31±12.10 65.85±13.34 67.38±12.87
β 75.24±14.00 79.07±12.94 80.59±12.17
γ 76.84±12.76 79.93±13.24 80.82±12.66

total 76.62±13.12 80.25±11.92 81.01±12.24



TABLE III

CONFUSION MATRICES OF SVM, GELM AND MRELM IN

EXPERIMENTAL PARADIGM 1 (MEAN±STD%).

SVM Negative Neutral Positive
Negative 58.73±31.53 24.16±22.28 17.11±15.91
Neutral 10.97±11.68 79.18±16.24 9.85±9.52
Positive 6.58±7.75 2.80±4.08 90.62±10.15

GELM Negative Neutral Positive
Negative 60.63±29.23 24.01±20.02 15.36±14.87
Neutral 7.66±12.08 85.63±15.83 6.71±7.95
Positive 3.93±6.26 3.00±3.88 93.07±7.54

MRELM Negative Neutral Positive
Negative 65.98±24.18 20.46±19.02 13.55±13.36
Neutral 8.79±11.83 83.85±15.68 7.35±8.19
Positive 4.30±7.86 3.61±3.51 92.08±8.74

TABLE IV

EMOTION RECOGNITION ACCURACIES(%) OF SVM(M1), GELM(M2)

AND MRELM(M3) IN EXPERIMENTAL PARADIGM 2.

ALGs. A1∗ A2 A3 B1 B2 B3
M1

A1
82.59 53.83 47.25

B1
88.15 37.21 61.05

M2 84.39 63.85 55.49 89.45 61.56 77.07
M3 85.26 62.64 62.85 92.63 63.82 61.61
M1

A2
67.27 75.65 48.34

B2
51.95 65.82 64.52

M2 66.91 70.09 50.79 72.90 69.15 73.70
M3 65.76 72.40 60.93 75.22 72.47 76.81
M1

A3
37.57 53.61 59.90

B3
68.42 52.24 71.82

M2 74.06 65.10 63.95 69.95 65.46 79.48
M3 68.03 62.55 65.39 75.10 65.09 79.33
M1

D1
66.33 52.46 41.98

D1
49.71 58.02 57.66

M2 75.87 60.40 51.01 67.27 49.21 59.47
M3 75.02 62.11 64.35 69.46 61.83 59.16

ALGs. C1 C2 C3 D1 D2 D3
M1

C1
76.52 82.88 67.62

D1
96.68 91.11 88.22

M2 82.37 89.02 67.05 96.68 89.60 88.58
M3 83.53 81.73 77.31 97.11 90.87 87.27
M1

C2
55.92 91.11 61.71

D2
90.17 91.04 96.89

M2 67.77 92.99 74.71 88.08 96.89 95.23
M3 76.87 93.14 79.32 90.07 96.82 95.37
M1

C3
76.52 75.29 61.20

D3
76.95 92.49 97.25

M2 75.29 80.42 67.85 80.49 95.95 96.53
M3 79.38 85.45 70.48 82.20 92.96 97.54
M1

D1
58.89 57.15 53.76

D1
96.68 91.11 88.22

M2 65.82 71.75 63.76 96.68 89.60 88.58
M3 65.72 69.33 62.11 97.11 90.87 87.27

ALGs. E1 E2 E3 F1 F2 F3
M1

E1
70.01 58.31 57.15

F1
73.19 44.65 51.45

M2 73.19 66.69 53.11 84.32 42.34 59.54
M3 75.94 73.95 57.13 85.55 58.30 59.90
M1

E2
54.99 60.19 45.09

F2
59.03 56.50 44.51

M2 68.28 73.19 51.08 77.60 59.25 64.38
M3 75.58 75.43 60.84 79.08 62.28 78.34
M1

E3
47.69 47.69 73.99

F3
60.69 58.89 87.50

M2 62.43 58.16 74.57 74.35 59.47 90.10
M3 59.66 55.36 71.10 76.38 65.43 91.76
M1

D1
58.67 40.03 46.03

D1
48.19 48.98 70.89

M2 61.20 52.96 60.84 52.82 59.25 71.75
M3 63.07 55.63 64.73 51.80 55.83 69.86∗

“A1” means the first session data of subject A, and so on. For example,
the value 69.86 in bottom right corner is obtained by feeding D1 as
training data and F3 as test data into MRELM.

TABLE V

AVERAGE PERFORMANCES OF SVM, GELM AND MRELM IN

EXPERIMENTAL PARADIGM 2 (MEAN±STD%).

ALGs. 1 2 3
SVM

1
81.89±10.01 61.33±21.34 62.13±14.65

GELM 85.07±7.79 68.86±18.01 66.91±13.86
MRELM 86.67±7.38 71.89±12.62 67.67±11.90

SVM
2

63.22±14.20 73.39±15.15 60.18±19.91
GELM 73.59±8.16 76.93±13.86 68.32±16.81

MRELM 77.10±7.83 78.76±13.38 75.27±13.01
SVM

3
61.31±15.97 63.37±17.18 75.28±14.70

GELM 72.71±6.11 70.76±14.66 78.75±12.66
MRELM 73.46±8.28 71.14±14.65 79.27±12.86

SVM
D1

56.36±7.45 51.32±7.30 54.06±11.26
GELM 64.60±8.46 58.71±8.61 63.30±9.29

MRELM 65.01±8.64 60.95±5.63 64.04±3.94

1−>1 1−>2 1−>3 2−>1 2−>2 2−>3 3−>1 3−>2 3−>3 D1−>1D1−>2D1−>3
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Fig. 2. Average performances of 3 classifiers in experimental paradigm 2.

2) positive state are easiest to be estimated than the other two
states; 3) the connection between emotional states and EEG
is stable among different sessions and different subjects.
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