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Abstract—Multimodal signals are powerful for emotion recog-
nition since they can represent emotions comprehensively. In this
paper, we compare the recognition performance and robustness
of two multimodal emotion recognition models: deep canonical
correlation analysis (DCCA) and bimodal deep autoencoder
(BDAE). The contributions of this paper are three folds: 1) We
propose two methods for extending the original DCCA model
for multimodal fusion: weighted sum fusion and attention-based
fusion. 2) We systemically compare the performance of DCCA,
BDAE, and traditional approaches on five multimodal datasets.
3) We investigate the robustness of DCCA, BDAE, and traditional
approaches on SEED-V and DREAMER datasets under two
conditions: adding noises to multimodal features and replacing
EEG features with noises. Our experimental results demonstrate
that DCCA achieves state-of-the-art recognition results on all
five datasets: 94.6% on the SEED dataset, 87.5% on the SEED-
IV dataset, 84.3% and 85.6% on the DEAP dataset, 85.3%
on the SEED-V dataset, and 89.0%, 90.6%, and 90.7% on the
DREAMER dataset. Meanwhile, DCCA has greater robustness
when adding various amounts of noises to the SEED-V and
DREAMER datasets. By visualizing features before and after
DCCA transformation on the SEED-V dataset, we find that the
transformed features are more homogeneous and discriminative
across emotions.

Index Terms—Multimodal emotion recognition, EEG, Eye
movement, Multimodal deep learning, Deep canonical correlation
analysis, Bimodal Deep AutoEncoder, Robustness.

I. INTRODUCTION

EMOTION strongly influences in our daily activities such
as interactions between people, decision making, learn-

ing, and working. Picard et al. developed the concept of affec-
tive computing, which aims to be used to study and develop
systems and devices that can recognize, interpret, process,
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and simulate human affects [1]. Human emotion recognition
is a current hotspot in affective computing research, and it
is critical for applications such as affective brain-computer
interface [2], emotion regulation and the diagnosis of emotion-
related diseases [3].

Traditional emotion recognition systems are built with non-
physiological signals [4], [5]. However, emotions also contain
reactions from the central and peripheral nervous systems.
Besides, electroencephalography (EEG)-based emotion recog-
nition has been demonstrated to be a reliable method because
of its high recognition accuracy, objective evaluation and stable
neural patterns [6], [7], [8], [9], [10].

In recent years, researchers have tended to study emotions
through EEG signals. Various methods have been proposed
for EEG-based emotion recognition [11], [12], [13], [14],
[15], [16], [17], and one of the reasons is that EEG signals
are more accurate and difficult to deliberately change by
users. Moreover, other physiological signals such as elec-
tromyogram, electrocardiogram, skin conductivity, respiration,
and eye movement signals are also used to recognize emo-
tions [18], [19].

Because of the complexity of emotions, it is difficult for
single-modality signals to describe emotions comprehensively.
Therefore, recognizing emotions with multiple modalities has
become a promising method [20], [21], [22], [23]. Many
studies indicate that multimodal data can reflect emotional
changes from different perspective, which are conducive to
building a reliable and accurate emotion recognition model.

Multimodal fusion strategy is one of the key aspects in
taking full advantage of multimodal signals. Lu and colleagues
employed feature-level concatenation, MAX fusion, SUM
fusion, and fuzzy integral fusion to merge EEG and eye
movement features [24]. Koelstra and colleagues evaluated
the feature-level concatenation of EEG features and peripheral
physiological features [25]. Sun et al. built a hierarchical
classifier by combining both feature-level and decision-level
fusion for emotion recognition tasks in the wild [26].

Currently, with the rapid development of deep learning,
researchers are applying deep learning models to fuse multi-
modal signals. Deep-learning-based multimodal representation
frameworks can be classified into two categories: multimodal
joint representation and multimodal coordinated representa-
tion [27]. Briefly, the multimodal joint representation frame-
work takes all the modalities as input, and each modality
starts with several individual neural layers followed by a
hidden layer that projects the modalities into a joint space.
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The multimodal coordinated representation framework learns
separate representations for each modality and coordinates
them into a hyperspace with constraints between different
modalities. Many deep learning models have been applied
to emotion recognition in very recent years [28], [29], [30],
[31], [32], [33], however, the characteristics these two kinds
of models have not yet been fully studied.

In this paper, we compare the recognition perfor-
mance and robustness of deep canonical correlation anal-
ysis (DCCA) [32], [34] and bimodal deep autoencoder
(BDAE) [28], [35] for multimodal emotion recognition. DCCA
learns separate but coordinated representations for each modal-
ity under canonical correlation analysis (CCA) constraints.
BDAE, which is a method of multimodal joint representation
framework, transforms multiple modalities and jointly learns
fused features automatically. The main contributions of this
paper on multimodal emotion recognition can be summarized
as follows:

1) We propose two multimodal fusion methods to extend
the original DCCA model: a weighted-sum fusion and an
attention-based fusion. The weighted-sum fusion method
allows users to set different weights to different modali-
ties while the attention-based fusion method will calculate
the weights adaptively.

2) For the SEED-V dataset, we systemically compare the
emotion recognition performance of DCCA with that of
BDAE and other existing methods. Then, by visualizing
transformed features of DCCA, we find that different
emotions are disentangled in the coordinated hyperspace.
And finally, we calculate and compare the mutual infor-
mation of multimodal features before and after DCCA
transformation.

3) We compare the robustness of DCCA and BDAE and the
conventional multimodal fusion methods on the SEED-
V and DREAMER datasets under two conditions: adding
noises to multimodal features and replacing EEG features
with noises. The experimental results show that DCCA
has higher robustness than both the BDAE and traditional
methods under most noise conditions.

4) We systematically compare the recognition performance
of DCCA and BDAE for multimodal emotion recognition
on five benchmark datasets: the SEED, SEED-IV, SEED-
V, DEAP, and DREAMER datasets. Our experimental
results on these five datasets reveal that both DCCA and
BDAE have better performance than traditional multi-
modal fusion methods for multimodal emotion recogni-
tion.

The remainder of this paper is organized as follows. Section
II summarizes the development and current state of multimodal
fusion strategies. In Section III, we introduce the algorithms
of standard DCCA and the proposed weighted-sum fusion
and attention-based fusion methods, BDAE, and the baseline
models utilized in this paper. The experimental settings are
reported in Section IV. Section V presents the experimental
comparison results and discussions. Finally, conclusions and
future work are given in Section VI.

II. RELATED WORK

Multimodal fusion has gained increasing attention from
researchers in diverse fields due to its potential for innumerable
applications such as emotion recognition, event detection,
image segmentation, and video classification [36]. According
to the level of fusion, traditional fusion strategies can be classi-
fied into the following three categories: 1) feature-level fusion
(early fusion), 2) decision-level fusion (late fusion), and 3)
hybrid multimodal fusion. With the rapid development of deep
learning, an increasing number of researchers are employing
deep learning models to facilitate multimodal fusion.

A. Feature-level fusion

Feature-level fusion is a common and straightforward
method to fuse different modalities. The features extracted
from various modalities are first combined into a high-
dimensional feature and then sent as a whole to the mod-
els [24], [25], [35].

The advantages of feature-level fusion are two-fold: 1) it
can utilize the correlation between different modalities at an
early stage, which better facilitates task accomplishment, and
2) the fused data contain more information than a single
modality, and thus, a performance improvement is expected.
The drawbacks of feature-level fusion methods mainly reside
in the following: 1) it is difficult to represent the time syn-
chronization between different modality features, 2) this type
of fusion method might suffer the curse of dimensionality on
small datasets, and 3) larger dimensional features might stress
computational resources during model training.

B. Decision-level fusion

Decision-level fusion focuses on the usage of different
classifiers and their combination. Ensemble learning is often
used to assemble these classifiers [37]. The term decision-level
fusion describes a variety of methods designed to merge the
outcomes and ensemble them into a single decision.

Rule-based fusion methods are most adopted in multimodal
emotion recognition. Lu and colleagues utilized MAX fusion,
SUM fusion, and fuzzy integral fusion for multimodal emotion
recognition, and they found the complementary characteristics
of EEG and eye movement features by analyzing confusion
matrices [24]. Although rule-based fusion methods are easy to
use, the difficulty faced by rule-based fusion is how to design
a good rule. If rules are too simple, they might not reveal the
relationships between different modalities.

The advantage of decision-level fusion is that the decisions
from different classifiers are easily compared and each modal-
ity can use its best suitable classifier for the task.

C. Hybrid fusion

Hybrid fusion is a combination of feature-level fusion and
decision-level fusion. Sun and colleagues built a hierarchical
classifier by combining both feature-level and decision-level
fusion methods for emotion recognition [26]. Guo et al. built
a hybrid classifier by combining fuzzy cognitive map and
support vector machine (SVM) to classify emotional states
with compressed sensing representation [38].
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D. Deep-learning-based fusion

For deep learning models, different types of multimodal
fusion methods have been developed, and these methods can
be grouped into two categories based on the modality rep-
resentation: multimodal joint representation and multimodal
coordinated representation [27].

The multimodal joint representation framework takes all
the modalities as input, and each modality starts with several
individual neural layers followed by a hidden layer that
projects the modalities into a joint space. Both transformation
and fusion processes are achieved automatically by black-box
models and users do not know the meaning of the joint rep-
resentations. The multimodal joint representation framework
has been applied to emotion recognition [28], [29] and natural
language processing [39].

The multimodal coordinated representation framework, in-
stead of projecting the modalities together into a joint space,
learns separate representations for each modality but coor-
dinates them through a constraint. The most common co-
ordinated representation models enforce similarity between
modalities. Frome and colleagues proposed a deep visual
semantic embedding (DeViSE) model to identify visual ob-
jects [40]. Andrew and colleagues proposed DCCA method,
which is another model under the coordinated representation
framework [34].

In recent years, more and more researchers use attention
mechanism to fuse multimodal signals [41], [42], [43]. Zhou
and colleagues proposed an attention-based bidirectional long-
short term memory (LSTM) to deal with relation classification
in natural language processing [41]. Zadeh and colleagues
applied attention-based fusion in the proposed delta-memory
attention network (DMAN) model to handle multi-view se-
quential learning problems [42]. Li and colleagues proposed
multimodal adversarial representation network by combining
adversarial learning and attention mechanism for click-through
rate prediction problem [43]. In this paper, we propose an
attention-based fusion strategy to extend the original DCCA
model for emotion recognition.

III. METHODS

In this section, we describe the building processes of
standard DCCA and the proposed weighted-sum fusion and
attention-based fusion methods in Section III-A. The baseline
methods used in this paper are introduced in Section III-B.

A. Deep Canonical Correlation Analysis

In this paper, we introduce deep canonical correlation anal-
ysis (DCCA) to multimodal emotion recognition. The original
DCCA was proposed by Andrew and colleagues [34], and it
computes representations of two modalities by passing them
through multiple stacked layers of nonlinear transformations.
Figure 1 depicts the framework of DCCA used in this paper.

Let X1 ∈ RN×d1 be the instance matrix for the first
modality and X2 ∈ RN×d2 be the instance matrix for the
second modality. Here, N is the number of instances, and d1
and d2 are the dimensions of the extracted features for these
two modalities, respectively. To transform the raw features of

O =f (X )

O!=f!(X!)

X�

X�

Fusion

CCA calculation CCA Loss

Classifier Classification Loss

Fig. 1. The framework of the DCCA used in this paper. Different modalities
are transformed by different neural networks separately. The outputs (O1, O2)
are regularized by the traditional CCA constraint. Various strategies can be
adopted to fuse O1 and O2, and the fused features are used for emotion
recognition. We update the parameters to minimize both the CCA loss and
the classification loss.

two modalities nonlinearly, we build two deep neural networks
for the two modalities as follows:

O1 =f1(X1;W1), (1)
O2 =f2(X2;W2), (2)

where W1 and W2 denote all parameters for the non-linear
transformations, O1 ∈ RN×d and O2 ∈ RN×d are the outputs
of the neural networks, and d denotes the output dimension of
DCCA.

The goal of DCCA is to jointly learn the parameters W1

and W2 for both neural networks such that the correlation of
O1 and O2 is as high as possible:

(W ∗1 ,W
∗
2 ) = arg max

W1,W2

corr(f1(X1;W1), f2(X2;W2)). (3)

We use the backpropagation algorithm to update W1 and
W2. The solution to calculating the gradients of the ob-
jective function in Eq. (3) was developed by Andrew and
colleagues [34].

Let Ō1 = O′1− 1
NO

′
11 be the centered output matrix (similar

to Ō2). We define Σ̂12 = 1
N−1 Ō1Ō

′
2, Σ̂11 = 1

N−1 Ō1Ō
′
1 +r1I.

Here, r1 is a regularization constant (similar to Σ̂22). The total
correlation of the top k components of O1 and O2 is the sum
of the top k singular values of matrix T = Σ̂

−1/2
11 Σ̂12Σ̂

−1/2
22 .

In this paper, we take k = d, and the total correlation is the
trace of T :

corr(O1, O2) =

(
tr(T ′T )

)1/2

. (4)

The CCA loss is the negative of total correlation:

LCCA = −corr(O1, O2) (5)

Finally, we calculate the gradients with the singular decompo-
sition of T = UDV ′,

∂corr(O1, O2)

∂O1
=

1

N − 1
(2∇11Ō1 +∇12Ō2), (6)

where

∇11 =− 1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11 , (7)

∇12 =Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 , (8)
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Fig. 2. The process for our proposed weighted sum fusion.

and ∂corr(O1, O2)/∂O2 has a symmetric expression.
After the training of the two neural networks, the trans-

formed features O1, O2 ∈ S are in the coordinated hyperspace
S. In the original DCCA [34], the authors did not explic-
itly describe how to use transformed features for real-world
applications via machine learning algorithms. Users need to
design a strategy to take advantage of the transformed features
according to their application.

In this paper, we extend the original DCCA to fuse multi-
modal signals and propose two fusion strategies: 1) weighted
sum fusion and 2) attention-based fusion.

1) Weighted sum fusion: For weighted sum fusion, the
detailed process for feature fusion and classification is depicted
in Figure 2. We initialize two hyper-parameters α1 and α2,
manually find the best value of these two weights, and fuse
different modalities as follows:

O = α1O1 + α2O2, (9)

where α1 and α2 are weights satisfying α1 +α2 = 1. To find
the best combination of weights α1 and α2, the grid search
method is used to compare the performance of different weight
combinations. The α1 value varies in the range between 0 and
1.0 with a step of 0.1. The grid search results are given in
Section V.

And finally, we use SVM to build emotion model with the
fused features. Since the tuning of α1 and α2 and optimization
of SVM can not be optimized with backpropagation, we actu-
ally apply a two-stage training process which means that we
first optimize the CCA loss and extract transformed features,
and then we apply weighted sum fusion and SVM for emotion
recognition.

O�=f�(X�)

O�=f�(X�)

attention
 weights

α�

α�

output

Ofusion FC layer

multiply operator

adding operator

inner product

Fig. 3. The process for our proposed attention-based fusion.

2) Attention-based fusion: Figure 3 illustrates the detailed
process for our proposed attention-based fusion. First, we

initialize an attention layer with parameters Wattn, then we
calculate the inner product of attention weights and outputs of
different modalities and apply softmax to normalize the results
getting attention weights α1 and α2, respectively.

α̂1 =< O1,Wattn > (10)
α̂2 =< O2,Wattn > (11)
α1, α2 = softmax(α̂1, α̂2) (12)

After calculating the attention weights, we extract the fused
features by:

O = α1O1 + α2O2 (13)

Next, a full-connected (FC) layer is add as classifier with
which we can calculate the classification loss. Under attention-
based fusion settings, all the updates can be calculated with
backpropagation, and we optimize both CCA loss and classi-
fication loss simultaneously:

L = γ1LCCA + γ2Lclassification (14)

where γ1 and γ2 are hyper-parameters.
In this paper, we conducted several experiments to discuss

the influences of different update ratios R = γ1/γ2. We keep
the parameter γ2 = 1.0 and choose γ1 from a set {0.1, 0.3,
0.5, 0.7, 0.9, 1.0} so that the update ratio R of CCA loss and
classification loss ranges from 0.1 to 1.0. We utilize a larger
γ2 since the classification performance is the key metric in the
model. Therefore, the penalty of the classification loss should
be larger than that of the CCA loss.

According to the construction process mentioned above, the
extended DCCA brings the following advantages to multi-
modal emotion recognition:
• We can explicitly extract transformed features for each

modality (O1 and O2), so that it is convenient to examine
the characteristics and relationships of modality-specific
transformations.

• With specified CCA constraints, we can regulate the non-
linear mappings (f1(·) and f2(·)) and make the model
preserve the emotion-related information.

• For weighted sum fusion, we assign different priorities
to these modalities based on our priori knowledge. In
Section V-A, we describe how to find the best α1 and α2

and illustrate the influences brought by these two weights.
• For attention-based fusion, we calculate weights for dif-

ferent modalities adaptively. The attention-based fusion
can be seen as an adaptive version of the weighted-sum
fusion since the weights calculated by attention-based
fusion might be the same as weighted-sum fusion and this
guarantees that the performance of attention-based fusion
will not be worse than that of weighted-sum fusion.

B. Baseline methods
1) Concatenation Fusion: The feature vectors from two

modalities are denoted as X1 = [x11, · · · , x1n] ∈ Rn and
X2 = [x21, · · · , x2m] ∈ Rm, and the fused features can be
calculated with the following equation:

Xfusion = Concat([X1, X2])

= [x11, · · · , x1n, x21, · · · , x2m]. (15)
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TABLE I
SUMMARY OF DATASETS AND EXPERIMENTAL SETTINGS.

Dataset Task Modality Training Scheme Test Scheme
SEED 3 emotions EEG, Eye movement session-dependent train : test=3 : 2

SEED-IV 4 emotions EEG, Eye movement session-dependent train : test=2 : 1
SEED-V 5 emotions EEG, Eye movement subject-dependent 3-fold cross-validation
DEAP 2 binary EEG, peripheral physiological signals subject-dependent 10-fold cross-validation

DREAMER 3 binary EEG, ECG subject-dependent 18-fold cross-validation

2) MAX Fusion: Assuming that we have K classifiers and
C categories, there is a probability distribution for each sample
Pj(Yi|xt), j ∈ {1, · · · ,K}, and i ∈ {1, · · · , C}, where xt
is a sample, Yi is the predicted label, and Pj(Yi|xt) is the
probability of sample xt belonging to class i generated by
the j-th classifier. The MAX fusion rule can be expressed as
follows:

Ŷ = arg max
i
{arg max

j
Pj(Yi|xt)}. (16)

3) Fuzzy Integral Fusion: A fuzzy measure µ on the set
X is a function: µ : P(X) → [0, 1], which satisfies the two
axioms: 1) µ(∅) = 0 and 2) A ⊂ B ⊂ X implies µ(A) ≤
µ(B). In this paper, we use the discrete Choquet integral to
fuse the multimodal features. The discrete Choquet integral of
a function f : X → R+ with respect to µ is defined by

Cµ(f) :=

n∑
i=1

(
f(x(i))− f(x(i−1))

)
µ(A(i)), (17)

where ·(i) indicates that the indices have been permuted such
that 0 ≤ f(x(1)) ≤ · · · ≤ f(x(n)), A(i) := {x(i), · · · , x(n)},
and f(x(0)) = 0. We utilize the algorithm proposed by Tanaka
and Sugeno [44] to calculate the fuzzy measure.

4) BDAE: BDAE was proposed by Ngiam and col-
leagues [35]. In our previous work, we adopted BDAE to
multimodal emotion recognition [28]. The BDAE training
procedure includes encoding and decoding. In the encoding
phase, we train two restricted Boltzmann machines (RBMs) for
EEG features and eye movement features. These two hidden
layers are concatenated together, and the concatenated layer
is used as the visual layer of a new upper RBM. In the
decoding stage, we unfold the stacked RBMs to reconstruct the
input features. Finally, we use a back-propagation algorithm
to minimize the reconstruction error.

IV. EXPERIMENTAL SETTINGS

In Section 4.1, we introduce the five datasets evaluated in
this paper. In Section 4.2, features extraction methods are
introduced. And experimental settings are presented in Section
4.3. Table I shows the summary of datasets and experimental
settings.

A. Datasets

Five typical multimodal emotion recognition datasets are
selected for comparison study in this paper.

1) SEED dataset1: The SEED dataset was developed by
Zheng and Lu [6]. Fifteen Chinese film clips of three emotions
(happy, neutral and sad) were used as stimuli in the experi-
ments. Every participant took part in the experiment for three
times. In this paper, we use the dataset as in our previous
work [24], [28], [29] for the comparison study ( 9 participants,
27 sessions).The SEED dataset contains EEG signals and eye
movement signals.

2) SEED-IV dataset: The SEED-IV dataset was first used
in [21]. Seventy-two film clips were chosen as stimuli
materials. The dataset contains emotional EEG signals and eye
movement signals of four different emotions, i.e., happy, sad,
neutral, and fear. Fifteen subjects (7 male and 8 female) par-
ticipated in the experiments for three sessions were performed
on different days.

3) SEED-V dataset: The SEED-V dataset was first used
in [45]. The dataset contains EEG signals and eye movement
signals for five emotions (happy, sad, neutral, fear, and dis-
gust). Sixteen subjects (6 male and 10 female) were required
to watch 15 movie clips (3 clips for each emotion), and each
of them performed the experiment three times. The SEED-
V dataset used in this paper will be freely available to the
academic community as a subset of SEED2.

4) DEAP dataset: The DEAP dataset was developed by
Koelstra and colleagues [25]. The EEG signals and peripheral
physiological signals of 32 participants were recorded while
watching music videos. Participants rated each video on levels
of arousal, valence, like/dislike, dominance, and familiarity.

5) DREAMER dataset: The DREAMER dataset is a
multimodal emotion dataset developed by Katsigiannis and
Ramzan [46]. The DREAMER dataset consists of EEG and
electrocardiogram (ECG) signals of 23 subjects (14 males and
9 females). The participants watched 18 film clips to elicit 9
different emotions. After watching a clip, the self-assessment
manikins were used to acquire assessments of valence, arousal,
and dominance.

B. Feature extraction

1) EEG feature extraction: For EEG signals, we extract
differential entropy (DE) features using short-term Fourier
transforms with a 4-second Hanning window without over-
lapping [47], [48].

We extract DE features from EEG signals (from the SEED,
SEED-IV and SEED-V datasets) in five frequency bands for all
channels: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta
(14-31 Hz), and gamma (31-50 Hz). There are in total 62 ×

1http://bcmi.sjtu.edu.cn/home/seed/index.html
2http://bcmi.sjtu.edu.cn/home/seed/index.html
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TABLE II
SUMMARY OF EXTRACTED EYE MOVEMENT FEATURES.

Eye movement parameters Extracted features

Pupil diameter (X and Y)

Mean, standard deviation,
DE in four bands
(0–0.2Hz,0.2–0.4Hz,
0.4–0.6Hz,0.6–1Hz)

Disperson (X and Y) Mean, standard deviation
Fixation duration (ms) Mean, standard deviation
Blink duration (ms) Mean, standard deviation

Saccade
Mean and standard deviation of
saccade duration(ms) and
saccade amplitude(◦)

Event statistics

Blink frequency,
fixation frequency,
fixation duration maximum,
fixation dispersion total,
fixation dispersion maximum,
saccade frequency,
saccade duration average,
saccade amplitude average,
saccade latency average.

5 = 310 dimensions for 62 EEG channels. The linear dynamic
system method is used to filter out noise and artifacts [49].

For the DEAP dataset, we extract the DE features from four
frequency bands: theta, alpha, beta, and gamma (no delta band
because the downloaded processed data is filtered to 4-75 Hz.).
As a result, there are 128 dimensions for the DE features.

2) ECG feature extraction: In previous work of ECG-based
emotion recognition, researchers extracted time-domain fea-
tures, frequency-domain features, and time-frequency-domain
features from ECG signals for emotion recognition [46], [50].
Since there are no standard frequency separation methods for
ECG signals [51], we extract the logarithm of the average
energy of five frequency bands (1– 4 Hz, 5 – 8 Hz, 9 – 14
Hz, 15 – 31 Hz, and 32 – 50 Hz) from two ECG channels of
the DREAMER dataset. As a result, we extract 10-dimensional
features from the ECG signals.

3) Eye movement features: The eye movement features
extracted from SMI ETG eye-tracking glasses3 contain both
statistical features and computational features. Table II shows
all 33 eye movement features used in this paper.

4) Peripheral physiological signal features: For peripheral
physiological signals from the DEAP dataset, we calculate sta-
tistical features in the temporal domain: the maximum value,
minimum value, mean value, standard deviation, variance, and
squared sum. For 8 channels of the peripheral physiological
signals, we extract 48 (6× 8)-dimensional features.

C. Model training

For the SEED dataset, the DE features of the first 9 movie
clips are used as training data, and those of the remaining
6 movie clips are used as test data. In this paper, we build
‘session-dependent’ models for three emotions (happy, sad,
and neutral), which is the same as in our previous work [24],
[28], [29]. Since every participant took part in the experiment
for three sessions, and we build a model for every session, we
call the model ‘session-dependent’ as shown in Table I.

3https://en.wikipedia.org/wiki/SensoMotoric Instruments

As can be seen from Table I, the test schemes for different
datasets are different. The five datasets used in this paper are
collected by different research teams at different times. The
test schemes for emotion recognition tasks of these datasets
are different in the original papers [6], [21], [45], [25], [46].
Most previous studies use the same test schemes as the original
papers to report a fair comparison. In this paper, we also use
the same test schemes as the original papers to compare our
methods with the existing methods.

For SEED-IV dataset, we use the data from the first 16
trials as the training data and the data from the remaining 8
trials as the test data [21]. DCCA is trained under ‘session-
dependent’ setting to recognize four emotions (happy, sad,
fear, and neutral)

For the SEED-V dataset, the training-testing separation
strategy is the same as that used by Zhao et .al [52]. We
adopt three-fold cross-validation to evaluate the performance
of DCCA on a five emotion (happy, sad, fear, neutral, and
disgust) recognition task. Since the participant watched 15
movie clips in one session (the first 5 clips, the middle 5
clips and the last 5 clips) and participated in three sessions,
we concatenate features of the first 5 clips from three sessions
(i.e., we concatenate features extracted from 15 movie clips)
as the training data for fold one (with a similar operation for
folds two and three) which is a ‘subject-dependent’ setting.

For the DEAP dataset, we build a subject-dependent model
with a 10-fold cross-validation on two binary classification
tasks: arousal-level classification and valence-level classifica-
tion with a threshold of 5.

For the DREAMER dataset, we utilize leave-one-out cross-
validation (i.e., 18-fold validation) to evaluate the performance
of DCCA, BDAE and baseline methods on three binary
classification tasks (arousal, valence, and dominance), which
is the same as that used by Song et al. [53].

Table III summarizes the DCCA structures for these
datasets. For all five datasets, the learning rate, batch size,
and regulation parameter of DCCA are set to 0.001, 100,
and 1e−8, respectively. For BDAE model, we use grid search
to find the best number of neurons in hidden layers (hidden
units are selected from list [200, 150, 100, 90, 70, 50, 30,
20, 15, 10]), and the optimization algorithm is RMSProp with
learning rate 0.001. Classifiers for baseline methods mentioned
in Section III-B are linear SVM with the same experimental
settings as DCCA and BDAE for different datasets.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results. In
Sections V-A and V-B, we examine the effectiveness of DCCA
on the SEED-V and DREAMER datasets, respectively. In Sec-
tion V-C, we compare the recognition performance of DCCA,
BDAE, and the traditional multimodal fusion approaches on
the SEED, SEED-IV and DEAP datasets. In Sections V-D
and V-E, we evaluate the robustness of DCCA, BDAE, and
traditional methods on the SEED-V and DREAMER datasets,
respectively.

It is worth noting that the weighted-sum fusion method is
evaluated on all of the five datasets, while the attention-based
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TABLE III
SUMMARY OF THE DCCA STRUCTURES FOR FIVE DIFFERENT DATASETS

Datasets #HiddenLayers #HiddenUnits Output Dimensions
SEED 6 400±40, 200±20, 150±20, 120±10, 60±10, 20±2 20
SEED-IV 7 400±40, 200±20, 150±20, 120±10, 90±10, 60±10, 20±2 20
SEED-V 2 searching for the best numbers between 50 and 200 12
DEAP 7 1500±50, 750±50, 500±25, 375±25, 130±20, 65±20, 30±20 20
DREAMER 2 searching for the best numbers between 10 and 200 5

method is only evaluated on the SEED-V dataset, and all the
analysis and discussion related to DCCA are based on the
weighted-sum fusion method. This is because the SEED-V is
a newly developed dataset and we want to give a complete
comparison on this dataset. Besides, since the attention-based
fusion can be seen as an adaptive version of the weighted-sum
fusion, the effectiveness of attention-based fusion method can
be evaluated on one dataset.

A. Effectiveness Evaluation of DCCA on the SEED-V dataset

We examine the effectiveness of DCCA on the SEED-V
dataset, which contains multimodal signals of five emotions
(happy, sad, fear, neutral, and disgust).

1) Output dimension and fusion coefficients: We adopt the
grid search method with output dimensions ranging from 5 to
50 and coefficients for the EEG features ranging from 0 to
1, i.e. α1 = [0, 0.1, 0.2, · · · , 0.9, 1.0] for DCCA. Since α1 +
α2 = 1, we can calculate the weight for the other modality
via α2 = 1 − α1. Figure 4 shows the heat map of the grid
search results. Each row gives different output dimensions,
and each column is the weight of the EEG features (α1). The
numbers in blocks are the accuracy rates, which are rounded
to integers for simplicity, and the highest accuracy is marked
by a small red circle. According to Figure 4, we set the output
dimension to 12 and the weight of the EEG features to 0.7
(i.e., α1 = 0.7, α2 = 0.3).
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Fig. 4. Selection of the best output dimension and EEG weight of DCCA on
the SEED-V dataset. Each row represents the number of output dimensions,
and each column denotes the weight (α1) of the EEG features, and the highest
recognition accuracy is marked by a small red circle.

2) Update ratio R selection: According to experimental
settings mentioned in Section III-A2, the update ratioR ranges
from 0.1 to 1.0. Table IV shows the emotion recognition accu-
racies of SEED-V dataset under different update ratios. From
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Fig. 5. Comparison of the confusion matrices of different methods on the
SEED-V dataset. Subfigures (a), (b), and (c) are the confusion matrices from
[52] for SVM classifiers of unimodal features and BDAE model of multimodal
features. Subfigure (d) is the confusion matrix of DCCA.

the results, the best performance is obtained with R = 0.7
(i.e. γ1 = 0.7 and γ2 = 1.0). So in this paper, we set γ1 = 0.7
and γ2 = 1.0. The setting R = 0.7 can effectively balance
the penalty between the CCA loss and the classification loss.
Therefore, we use the ratio 0.7 in our further analysis.

TABLE IV
EMOTION RECOGNITION ACCURACIES UNDER DIFFERENT UPDATE RATIOS

R (γ1/γ2) 0.1 0.3 0.5 0.7 0.9 1.0
Acc (%) 84.5 84.8 84.4 85.3 85.1 84.3
Std (%) 5.5 5.2 4.9 5.6 5.5 5.3

3) Emotion recognition performances: Table V summarizes
the emotion recognition results on the SEED-V dataset. Zhao
and colleagues [52] adopted feature-level concatenation and
BDAE for fusing multiple modalities, and achieved mean
accuracy rates of 73.7% and 79.7%, respectively. The MAX
fusion and fuzzy integral fusion yielded mean accuracy rates
of 73.2% and 73.2%, respectively. The mean accuracy rate of
DCCA with weighted-sum fusion is 83.1%, and the result for
DCCA with attention-based fusion is 85.3% which is the best
result among the six fusion strategies.

Figure 5 depicts the confusion matrices of different meth-
ods. Figures 5(a), (b) and (c) are the confusion matrices
for the EEG features, eye movement features, and BDAE,
respectively. Figure 5(d) depicts the confusion matrix for
DCCA. From Figures 5(a), (b), and (d), for each of the five
emotions, DCCA achieves a higher accuracy, indicating that
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TABLE V
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

FOUR EXISTING METHODS AND DCCA ON THE SEED-V DATASET

Methods Mean Std
Concatenation [52] 73.7 8.9
MAX 73.2 9.3
Fuzzy Integral 73.2 8.7
BDAE [52] 79.7 4.8
DCCA with weighed-sum fusion 83.1 7.1
DCCA with attention-based fusion 85.3 5.6

emotions are better represented and more easily classified in
the coordinated hyperspace S transformed by DCCA.

From Figures 5(a) and (c), compared with the unimodal
results of the EEG features, BDAE has worse classification
results on the happy emotion, suggesting that BDAE might
not take full advantage of different modalities for the happy
emotion. Comparing Figures 5(c) and (d), DCCA largely im-
proves the classification results on disgust and happy emotion
recognition tasks compared with BDAE, implying that DCCA
is more effective in fusing multiple modalities.

4) Visualization of fused features: To analyze the coordi-
nated hyperspace S of DCCA, we utilized the t-SNE algo-
rithm to visualize the space of the original features and the
coordinated hyperspace of the transformed features and fused
features. Figure 6 presents a visualization of the features from
three participants. Note that the distributions of all participants
are similar. Due to the limited space, we only show the
distributions of three random subjects. The first row shows
the original features, the second row depicts the transformed
features, and the last row presents the fused features. The
different colors stand for different emotions, and the different
markers are different modalities. We can make the following
observations:

• Different emotions are disentangled in the coordinated
hyperspace S. For original features, there are more over-
laps among different emotions (different colors present-
ing substantial overlap), which lead to poorer emotional
representation. After the DCCA transformation, different
emotions become relatively independent, and the over-
lapping areas are considerably reduced. This indicates
that the transformed features have improved emotional
representation capabilities compared with the original
features. Finally, after multimodal fusion, different emo-
tions (‘�’ of different colors in the last row of Figure. 6)
are completely separated, and there is no overlapping
area, indicating that the merged features also have good
emotional representation ability.

• Different modalities have homogeneous distributions in
the coordinated hyperspace S. To make this observation
more obvious, we separate and plot the distributions
of the EEG and eye movement features under the sad
emotion in Figure 7. From the perspectives of both inter-
modality and intra-modality distributions, the original
EEG features (‘◦’ marker) and eye movement features
(‘×’ marker) are separated from each other. After the
DCCA transformation, the EEG features and the eye
movement features have more compact distributions, indi-

cating that the coordinated hyperspace S preserves shared
emotion-related information and discards irrelevant infor-
mation.

Figures 6 and 7 qualitatively indicate that DCCA maps
original EEG and eye movement features into a coordinated
hyperspace S where emotions are better represented since only
emotion related information is preserved.

5) Mutual information analysis: To support our claims
quantitatively, we calculated the mutual information of the
original features and transformed features. Figure 8 presents
the mutual information of three participants estimated by
mutual information neural estimation [54]. The green and red
curves depict the mutual information of the original features
and the transformed features, respectively. The transformed
features have more mutual information than the original fea-
tures, indicating that the transformed features provide more
shared emotion-related information, which is consistent with
observations from Figures 6 and 7.

6) Attention weights analysis: As we have mentioned be-
fore, attention-based fusion method could calculate weights for
EEG features and eye movement features adaptively. Figure 9
shows the average weights of all subjects in SEED-V dataset.
The following two observations can be drawn by comparing
Figures 9 and 4: 1) EEG features contribute more to the final
emotion recognition results than eye movement features and
2) the adaptively computed weights for both EEG features and
eye movement features float around the best weights shown
in Figure 4, which is consistent with our previous hypothesis
that the attention-based fusion could be seen as an adaptive
version of weighted-sum fusion.

B. Effectiveness Evaluation of DCCA on the DREAMER
dataset

For DCCA, we choose the best output dimensions and
weight combinations with a grid search. We select the output
dimension from the set [5, 10, 15, 20, 25, 30] and the EEG
weight α1 in [0, 0.1, · · · , 0.9, 1.0] for three binary classifica-
tion tasks. Figures 10(a), (b), and (c) depict the heat maps
of the grid search for arousal, valence, and dominance clas-
sifications, respectively. According to Figure 10, we choose
α1 = 0.9 and α2 = 0.1 for the arousal classification, α1 = 0.8
and α2 = 0.2 for the valence classification, and α1 = 0.9 and
α2 = 0.1 for the dominance classification.

For BDAE, we select the best output dimensions from
[700, 500, 200, 170, 150, 130, 110, 90, 70, 50], and leave-one-
out cross-validation is used to evaluate the BDAE model.

Table VI gives comparison results of the different meth-
ods. Katsigiannis and Ramzan released this dataset, and they
achieved accuracy rates of 62.3%, 61.8%, and 61.8% on
arousal, valence and dominance classification tasks, respec-
tively [46]. Song and colleagues conducted a series of ex-
periments and compared performance of graph regularized
sparse linear discriminant analysis (GraphSLDA), group sparse
canonical correlation analysis (GSCCA), and dynamical graph
convolutional neural network (DGCNN) on this dataset. The
DGCNN method performed better than the other two methods
achieving classification accuracy rates of 84.5% for arousal
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classification, 86.2% for valence classification, and 85.0% for
dominance classification [53]. For the concatenation fusion
method, the emotion recognition accuracies are 71.4%, 70.1%,
and 71.3% for arousal, valence, and dominance classification
tasks, respectively. For the MAX fusion method, the emotion
recognition accuracies are 72.7%, 72.2%, and 74.3% for
arousal, valence, and dominance classification tasks, respec-
tively. The fuzzy integral fusion method achieves 75.7%,
72.4%, and 77.4% accuracies for arousal, valence, and domi-
nance classification tasks, respectively. From Table VI, we can
see that BDAE and DCCA adopted in this paper outperform
DGCNN. For BDAE, the recognition results for arousal,
valence, and dominance are 88.6%, 86.6%, and 89.5%, respec-
tively. DCCA achieves the best performance among all seven
methods: 89.0%, 90.6%, and 90.7% for arousal, valence, and

dominance level recognitions, respectively.

C. Recognition Performance Comparison
In this section, we present experimental results of DCCA

and BDAE on the SEED, SEED-IV, and DEAP datasets. Table
VII lists the results obtained by seven existing methods and
DCCA on the SEED dataset.

Lu and colleagues applied concatenation fusion, MAX
fusion and fuzzy integral to fuse multiple modalities and
demonstrated that the fuzzy integral fusion method achieved
the accuracy of 87.6% [24]. Tang et al. [29] adopted bimodal
LSTM, obtaining accuracy 94.0%. Recently, Yang and col-
leagues [8] build a single-layer feedforward network (SLFN)
with subnetwork nodes and achieved an accuracy of 91.5%.
Song and colleagues [53] proposed DGCNN and obtained a
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Fig. 9. Visualization of weights calculated by attention-based fusion method.
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Figure 4, EEG features contribute more to the final recognition results and
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similar to results shown in Figure 4.

classification accuracy of 90.4%. In our previous work [28],
BDAE method obtained 91.0% accuracy. From Table VII, we
can see that DCCA achieves the best result of 94.6% among
the eight different methods.

Table VIII gives the results of five different methods on the
SEED-IV dataset. We can observe from Table VIII that for
SVM classifier with concatenation fusion, MAX fusion and
fuzzy integral fusion, the four emotion states are recognized
with a 77.6% mean accuracy rate at the very most. BDAE
obtains a mean accuracy rate of 85.1%. DCCA outperforms the
aforementioned two methods, with an 87.5% mean accuracy
rate.

For DEAP dataset, Table IX shows the results of two
binary classifications. As we can observe, DCCA achieves the
best results in both arousal classification (84.3%) and valence
classification (85.6%) tasks.

From the experimental results mentioned above, we can see
that DCCA outperforms BDAE and the existing methods on
the SEED, SEED-IV, and DEAP datasets.

D. Robustness Analysis on the SEED-V Dataset

EEG signals have a low signal-to-noise ratio (SNR) and
are easily interfered with by external environmental noise. To
compare the noise robustness of DCCA with that of BDAE
and the traditional multimodal fusion methods, we designed
two experimental schemes on noisy datasets:
• We added Gaussian noise of different variances to both

the EEG and eye movement features. To highlight the
influence of noise, we added noise to the normalized
features since the directly extracted features are much
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Fig. 10. Selecting the best output dimension and weight combinations of
DCCA on the DREAMER dataset. The X-axis represents the weight for the
EEG features, and the Y -axis represents the output dimensions. The highest
recognition accuracies are marked by a small red circle.

TABLE VI
COMPARISON OF RECOGNITION ACCURACY (MEAN/STD, %) ON THE
DREAMER DATASET. THREE BINARY CLASSIFICATION TASKS ARE

EVALUATED: AROUSAL-LEVEL, VALENCE-LEVEL, AND
DOMINANCE-LEVEL CLASSIFICATIONS. ‘–’ MEANS THE RESULT IS NOT

REPORTED.

Methods Arousal Valence Dominance
SVM [46] 62.3/– 62.5/– 61.8/–
SVM [53] 68.8/24.9 60.1/33.3 75.8/20.8
GraphSLDA [53] 68.1/17.5 57.7/13.9 73.9/15.9
GSCCA [53] 70.3/18.7 56.7/21.5 77.3/15.4
DGCNN [53] 84.5/10.2 86.2/12.3 85.0/10.3
Concatenation 71.4/8.2 70.1/10.8 71.3/9.7
Max 72.7/8.4 72.2/7.6 74.3/6.7
Fuzzy Integral 75.7/7.2 72.4/8.9 77.4/6.6
BDAE 88.6/4.4 86.6/7.5 89.5/6.2
DCCA 89.0/2.8 90.6/4.1 90.7/4.3

TABLE VII
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

SEVEN EXISTING METHODS AND DCCA ON THE SEED DATASET. ‘–’
MEANS THE RESULT IS NOT REPORTED.

Methods Mean Std
Concatenation [24] 83.7 –
MAX [24] 81.7 –
Fuzzy Integral [24] 87.6 19.9
DGCNN [53] 90.4 8.5
SLFN with subnetwork nodes [8] 91.5 –
Bimodal-LSTM [29] 94.0 7.0
BDAE [28] 91.0 8.9
DCCA 94.6 6.2

TABLE VIII
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATIONS (%) OF

FOUR EXISTING METHODS AND DCCA ON THE SEED-IV DATASET

Methods Mean Std
Concatenation 77.6 16.4
MAX 60.0 17.1
Fuzzy Integral 73.6 16.7
BDAE [21] 85.1 11.8
DCCA 87.5 9.2
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TABLE IX
THE MEAN ACCURACY RATES (%) AND STANDARD DEVIATION (%) OF

THREE EXISTING METHODS AND DCCA FOR THE TWO BINARY EMOTION
CLASSIFICATION TASKS ON THE DEAP DATASET. ‘–’ MEANS THE RESULT

IS NOT REPORTED.

Methods Arousal Valence
MESAE [31] 84.2/– 83.0/–
Bimodal-LSTM [29] 83.2/2.6 83.8/5.0
BDAE [28] 80.5/3.4 85.2/4.5
DCCA 84.3/2.3 85.6/3.5

larger than the generated noise (which is mostly less than
1).

• Under certain extreme conditions, EEG signals may be
overwhelmed by noise. To simulate this situation, we
randomly replace different proportions (10%, 30%, and
50%) of EEG features with noise under a normal distribu-
tion (X ∼ N (0, 1)), gamma distribution (X ∼ Γ(1, 1)),
and uniform distribution (X ∼ U [0, 1]).

We compare the performance of three different combinations
of coefficients, i.e., α1 = 0.3 (DCCA-0.3), α1 = 0.5 (DCCA-
0.5), and α1 = 0.7 (DCCA-0.7). The reason for choosing
these three coefficients combination is that we want to examine
the effect of different weight coefficients on the robustness of
DCCA. The EEG coefficients of 0.3, 0.5 and 0.7 represent
settings where EEG features contribute less than, equal to and
larger than eye movement features, respectively.

1) Adding Gaussian noise: First, we investigate the robust-
ness of different weight combinations in DCCA after adding
Gaussian noise of different variances to both the EEG and eye
movement features. Figure 11(a) depicts the results. Although
the model achieves the highest classification accuracy when
the EEG weight is set to 0.7, it is also more susceptible to
noise. The robustness of the model decreases as the weight
of the EEG features increases. Since a larger EEG weight
leads to more EEG components in the fused features, we might
conclude that EEG features are more sensitive to noise than
are eye movement features.

Next, we compare the robustness of different models under
Gaussian noise with different variances. Taking both classifi-
cation performance and robustness into consideration, we use
DCCA with an EEG weight set to 0.5. Figure 11(b) shows
the performance of the various models. The performance
decreases with increasing variances of the Gaussian noise.
DCCA obtains the best performance when the noise is lower
than or equal toN (0, 1). The performance of the fuzzy integral
fusion strategy exceeds DCCA when the noise is stronger
than or equal to N (0, 3). The accuracy rates of BDAE greatly
reduced even when minimal noise is added.

2) Replacing EEG features with noise: Table X shows the
detailed emotion recognition accuracies and standard devi-
ations after replacing 10%, 30%, and 50% percent of the
EEG features with different noise distributions. The recog-
nition accuracies decrease with increasing noise proportions.
In addition, the performances of seven different settings under
different noise distributions are very similar, indicating that
noise distributions have limited influences on the recognition
accuracies.
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Fig. 11. Performance on the SEED-V dataset of (a) DCCA with different
weights and (b) various methods when adding Gaussian noise of different
variances.

To better observe the changing tendency, we plot the average
recognition accuracies under different noise distributions with
the same noise ratio. Figure 12(a) shows the average accuracies
for DCCA with different EEG weights. It is obvious that the
performance decreases with increasing noise percentages and
that the model robustness is inversely proportional to the ratio
of the EEG modality. This is the expected performance. Since
we only randomly replace EEG features with noise, larger
EEG weights will introduce more noises to the fused features,
resulting in a decrease in model robustness.

Similar to Figure 11(b), we also take DCCA-0.5, as a
compromise between performance and robustness to compare
with other multimodal fusion methods. Figure 12(b) depicts
the trends of the accuracies of several models. It is obvi-
ous that DCCA performs the best, the concatenation fusion
achieves a slightly better performance than the fuzzy integral
fusion method, and the BDAE model again presents the worst
performance.

Combining Figures 11 and 12, DCCA obtains the best
performance under most noisy situations, whereas BDAE
performs the worst under noisy conditions. This might be
caused by the following:

• As already discussed in previous sections, DCCA attemps
to preserve emotion-related information and discard ir-
relevant information. This property prevents the model
performance from rapidly deteriorating by neglecting
negative information introduced by noise.

• BDAE minimizes the mean squared error which is sensi-
tive to outliers [55]. The noisy training features will cause
the weights to deviate from the normal range, resulting
in a rapid decline in model performance.
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Fig. 12. Performance on the SEED-V dataset of (a) DCCA with different
wieghts and (b) various methods after replacing the EEG features with noise.
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TABLE X
RECOGNITION ACCURACY (MEAN/STD (%)) ON THE SEED-V DATASET AFTER REPLACING DIFFERENT PROPORTIONS OF EEG FEATURES WITH VARIOUS

TYPES OF NOISE. FIVE FUSION STRATEGIES UNDER VARIOUS SETTINGS ARE COMPARED, AND THE BEST RESULTS FOR EACH SETTING ARE IN BOLD.

Methods No noise Gaussian Gamma Uniform
10% 30% 50% 10% 30% 50% 10% 30% 50%

Concatenation 73.7/8.9 70.1/8.9 63.1/9.1 58.3/7.5 69.7/8.5 62.9/8.5 57.00/8.1 71.2/10.6 66.5/9.4 61.8/8.4
MAX 73.2/9.3 67.7/8.4 58.3/8.4 51.1/7.0 67.2/10.3 59.2/9.8 50.6/6.8 67.5/9.7 60.1/9.3 52.7/7.8
Fuzzy Integral 73.2/8.7 69.4/8.9 63.0/7.5 57.7/8.7 69.4/8.7 62.6/8.9 57.6/7.2 69.2/8.2 64.9/9.4 60.5/8.3
BDAE 79.7/4.8 47.8/7.8 45.9/7.8 44.5/7.4 45.3/6.7 45.8/7.9 45.1/8.4 46.1/8.2 46.9/7.1 45.5/9.6
DCCA-0.3 79.0/7.3 76.6/7.6 73.0/7.4 69.6/7.0 76.9/8.0 73.1/7.0 70.0/7.2 75.7/6.3 73.2/6.5 70.0/6.7
DCCA-0.5 81.6/7.0 77.9/6.6 71.8/6.6 65.2/6.2 78.3/7.4 72.5/6.1 65.8/6.1 78.3/7.2 73.2/7.0 68.0/7.1
DCCA-0.7 83.1/7.1 76.3/7.0 68.5/5.5 57.6/5.2 76.8/7.0 68.5/6.0 58.6/5.4 77.4/8.4 69.8/5.6 61.6/5.4

E. Robustness Analysis on the DREAMER Dataset

In this section, we present the comparison results of ro-
bustness of different methods on arousal classification, va-
lence classification, and dominance classification tasks on
the DREAMER dataset. Similar to previous settings in Sec-
tion V-D, we also evaluate the robustness performance under
two experimental settings: adding Gaussian noises to both
EEG and ECG features and replacing EEG features with noises
of Gaussian distribution, gamma distribution, and uniform dis-
tribution. For DCCA, we evaluate the robustness performance
under the best coefficients combination, i.e. α1 = 0.9 for
arousal classification, α1 = 0.8 for valence classification and
α1 = 0.9 for dominance classification.

1) Adding Gaussian noise: We compare the
robustness of different multimodal fusion methods after
adding Gaussian noises of different standard deviation
(N(0, 0.25), N(0, 0.5), N(0, 0.1), N(0, 0.3), N(0, 0.5)) to
both EEG and ECG features. Table XI shows the results
of arousal, valence and dominance classification tasks after
adding various Gaussian noises. From Table XI, we observe
that the model performance decreases with the noise standard
deviations become larger. In addition, DCCA has better
robustness performance than other methods, and BDAE also
has a worse performance compared with other methods. The
trends of robustness performance of different methods are
consistent in all the three tasks.

To better compare the overall performance of different
methods, we calculate the average accuracies of all three
binary classification tasks under different noise standard de-
viations. Figure 13(a) shows the average curves of these five
multimodal fusion methods. From Figure 13(a), it is obvious
that DCCA has the best robustness performance, BDAE has
the worst performance, and the concatenation fusion, MAX
fusion, and the fuzzy integral methods have similar robustness
performance.

Comparing Figure 13(a) and Figure 11(b), the curves in
Figure 13(a) change smoother than curves in Figure 11(b)
which might be related to the characteristics of different
datasets. Since the tasks of the DREAMER dataset are bi-
nary classifications, the worst recognition accuracies of noise
classifiers tend to be maintained at around 50% leading to a
stable change in Figure 13(a).

2) Replacing EEG features with noises: Table XII shows
the results of replacing 10%, 30%, and 50% percent of
EEG features with Gaussian, Gamma, and Uniform noises for
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Fig. 13. Model performance on the DREAMER dataset after (a) adding
Gaussian noise of different variances and (b) replacing EEG features with
noises. The curves shows the average performance of the three binary
classification tasks. The x-axis is the type of the Gaussian noise, and the
y-axis stands for the mean accuracies.

arousal classification, valence classification, and dominance
classification. The influences brought by noise types are not
very obvious which is consistent with trends shown in Table X.

To better depict the performance of different methods for
each of the three binary classification tasks, we first calculate
the average performance of the same noise percentage over
different noise types and then we calculate the average perfor-
mance over all three classification tasks. The averaged results
as depicted in Figure 13(b). From Figure 13(b), we can see
that DCCA performs best since the accuracy reduction is less
than other methods, while BDAE has the largest performance
gap suggesting a poor robustness. For traditional fusion meth-
ods, the fuzzy integral method has better performance than
concatenation and MAX fusion methods.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have systematically examined the recogni-
tion performance of DCCA, BDAE and traditional methods on
five typical multimodal emotion datasets. Particularly, we have
proposed two multimodal fusion strategies to extend the orig-
inal DCCA: a weighted-sum fusion strategy and an attention-
based fusion strategy. Our experimental results demonstrate
that DCCA is superior to BDAE and the traditional methods
for multimodal emotion recognition on all five datasets, and
that the attention-based fusion strategy performs better than
weighted-sum fusion.

We have analyzed weights from both the weighted-sum
fusion strategy and the attention-based fusion strategy. Our ex-
perimental results demonstrate that the attention-based fusion
strategy can be seen as an adaptive version of the weighted-
sum fusion strategy, where the weights calculated by the



2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2021.3071170, IEEE
Transactions on Cognitive and Developmental Systems

13

TABLE XI
RECOGNITION ACCURACY (MEAN/STD (%)) FOR AROUSAL, VALENCE, AND DOMINANCE CLASSIFICATION TASKS OF THE DREAMER DATASET

AFTER ADDING GAUSSIAN NOISES OF DIFFERENT STANDARD DEVIATIONS TO BOTH EEG AND ECG FEATURES.

Methods No noise N(0, 0.25) N(0, 0.5) N(0, 1) N(0, 3) N(0, 5)

Arousal

Concatenation 71.4/8.2 54.0/5.3 53.6/5.8 53.4/7.5 52.7/12.6 52.2/16.9
MAX 72.7/8.4 60.1/4.8 56.9/8.1 56.2/10.0 55.7/15.1 55.6/17.4
Fuzzy Integral 75.7/7.2 62.9/5.6 62.6/6.6 62.3/7.6 62.2/8.8 61.9/9.7
BDAE 88.6/4.4 68.8/7.8 66.8/3.8 67.0/4.6 58.6/15.0 58.6/15.3
DCCA-0.9 89.0/2.8 87.1/2.8 87.0/2.6 85.0/2.2 83.2/3.3 82.8/3.4

Valence

Concatenation 70.1/10.8 53.7/4.1 53.5/4.8 53.4/6.0 53.3/10.0 52.2/14.5
MAX 72.2/7.6 54.7/4.1 54.5/5.0 54.4/8.5 54.0/15.1 53.5/18.8
Fuzzy Integral 72.4/8.9 60.3/4.6 58.9/5.2 58.8/7.1 58.4/11.1 57.6/14.1
BDAE 86.6/7.5 65.0/8.8 65.6/5.9 64.4/9.2 51.3/22.7 49.9/24.7
DCCA-0.8 90.6/4.1 85.8/2.9 84.8/2.7 84.4/3.1 83.1/4.7 82.2/6.1

Dominance

Concatenation 71.3/9.7 53.5/3.9 52.9/5.2 52.5/6.6 52.4/10.9 52.0/14.1
MAX 74.3/6.7 54.7/5.5 54.6/6.3 54.3/8.5 54.0/14.2 53.7/17.1
Fuzzy Integral 77.4/6.6 62.6/6.0 62.5/7.0 62.3/8.2 61.8/8.3 60.8/9.1
BDAE 89.5/6.2 68.9/10.4 66.3/5.4 65.9/7.2 60.7/11.6 58.8/11.2
DCCA-0.9 90.7/4.3 86.9/3.3 86.7/3.1 84.5/1.8 82.7/3.8 82.6/3.7

TABLE XII
RECOGNITION ACCURACY (MEAN/STD (%)) FOR AROUSAL, VALENCE, AND DOMINANCE CLASSIFICATION TASKS OF THE DREAMER DATASET

AFTER REPLACING DIFFERENT PROPORTIONS OF EEG FEATURES WITH VARIOUS TYPES OF NOISE.

Methods No noise Gaussian Gamma Uniform
10% 30% 50% 10% 30% 50% 10% 30% 50%

Arousal

Concatenation 71.4/6.2 61.1/4.8 59.1/5.4 58.7/5.1 61.2/5.9 60.8/5.3 60.7/5.6 60.4/6.0 59.4/5.3 59.0/5.8
MAX 72.7/8.4 60.6/6.6 59.6/6.9 58.1/6.3 61.3/6.8 59.5/6.9 58.2/5.8 60.7/7.4 60.3/7.1 58.9/7.1
Fuzzy Integral 75.7/7.2 69.5/4.8 67.9/5.6 66.5/6.3 69.5/5.2 68.3/6.2 66.8/6.7 68.7/5.5 67.3/5.6 67.1/5.8
BDAE 88.6/4.4 73.8/6.9 73.5/6.4 68.9/7.0 70.6/11.5 70.0/8.3 69.5/7.8 69.5/11.7 68.9/10.0 67.5/9.9
DCCA-0.9 89.0/2.8 89.1/2.5 87.7/2.4 85.7/2.8 88.6/2.1 87.3/2.2 86.1/2.6 87.6/2.6 86.9/2.4 85.7/2.2

Valance

Concatenation 70.1/10.8 60.1/4.5 58.5/4.1 58.1/4.1 60.0/4.9 59.0/4.4 58.5/4.2 60.5/3.8 59.2/4.1 57.2/4.2
MAX 72.2/7.6 59.5/4.8 58.1/4.6 57.8/5.3 59.2/5.2 57.8/5.1 56.4/5.6 58.3/4.9 57.4/4.5 57.0/5.5
Fuzzy Integral 72.4/8.9 68.9/4.7 67.8/5.0 66.7/6.3 68.6/4.3 68.3/5.4 67.4/6.8 67.1/4.6 66.9/4.4 66.7/5.4
BDAE 86.6/7.5 75.1/8.1 70.7/8.7 65.2/8.7 69.9/10.1 68.4/9.9 66.4/10.1 68.6/10.0 67.2/11.0 65.3/10.6
DCCA-0.8 90.6/4.1 87.2/2.7 86.4/2.8 85.0/2.7 88.3/3.2 86.8/3.0 85.4/3.0 87.8/2.8 86.6/3.1 85.5/2.9

Dominance

Concatenation 71.3/9.7 60.7/5.8 60.4/5.2 60.3/5.6 60.5/5.0 60.4/5.5 60.4/5.9 60.8/5.4 60.5/5.0 60.1/4.8
MAX 74.3/6.7 60.2/5.9 59.5/6.2 58.7/6.3 60.7/6.5 59.6/6.6 58.8/5.9 59.8/5.7 59.0/5.8 58.3/6.7
Fuzzy Integral 77.4/6.6 69.6/4.8 67.4/4.7 66.9/5.8 69.6/4.8 69.6/4.8 67.0/6.2 69.2/4.6 69.1/4.3 68.7/4.8
BDAE 89.5/6.2 76.9/8.0 71.1/9.3 67.9/9.0 71.4/9.7 70.1/9.2 67.3/8.7 70.0/10.0 66.9/11.5 65.0/10.3
DCCA-0.9 90.7/4.3 88.9/3.5 86.8/2.2 85.7/2.8 89.0/8.9 86.6/2.5 85.9/2.5 88.5/4.4 86.6/2.9 85.9/1.9

attention-based fusion float around the best weights from the
weighted-sum fusion.

We have analyzed properties of the transformed features
in the coordinated hyperspace of DCCA. By applying the t-
SNE method, we have found qualitatively that: 1) different
emotions are better represented since they are disentangled
in the coordinated hyperspace; and 2) different modalities
have compact distributions from both inter-modality and intra-
modality perspectives. Our experimental results indicate that
the features transformed by DCCA have higher mutual in-
formation, indicating that DCCA transformation processes
preserve emotion-related information and discard irrelevant
information.

We have compared the robustness of DCCA and BDAE
on the SEED-V and DREAMER datasets under two schemes:
1) adding Gaussian noise of different variances to both EEG
and eye movement features (or ECG features) and 2) replacing
10%, 30%, and 50% percentage of EEG features with different
types of noise, the experimental results indicate that DCCA
possesses the strongest robustness to noise data among all of
the methods.

Although our extensive comparison results indicate that

DCCA in recognition performance and robustness is signif-
icantly superior to both BDAE and the traditional multimodal
fusion methods for multimodal emotion recognition, there is
still room for improvement in the following aspects. 1) The
CCA metric used in this paper can fuse only two modal-
ities which limits the application of the DCCA method in
real life where more than two modalities might be fused
simultaneously. We have achieved some preliminary results
by extending CCA metric to generalized CCA metric [56]. In
the future, we will evaluate the performance and robustness of
attention-based deep generalized CCA method to fuse different
modalities on more datasets. 2) Only one simple attention
mechanism was used in this paper. In the future, we will
explore different types of attention mechanisms such as co-
attention mechanism [57]. 3) We will investigate multimodal
fusion strategies by applying tensor-based fusion [58], [59],
[60] and generative adversarial networks [61] in the future.
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